Part 1A Paper 3: Electrical and Information Engineering DIGITAL CIRCUITS AND INFORMATION PROCESSING EXAMPLES PAPER 1

* Harder questions. † Straightforward questions.
\dagger 1. Complete the truth tables for the logic circuits in Figures 1 and 2.

Figure 1:

, | Inputs | Table for Figure 1 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | \bar{A} | $\bar{A} \cdot B$ | | | X |
| 0 | 0 | | | | | |
| 0 | 1 | | | | | |
| 1 | 0 | | | | | |
| 1 | 1 | | | | | |

Figure 2:

Inputs								Table for Figure 2					
A	B	\bar{A}	$\bar{A}+B$			Y							
0	0												
0	1												
1	0												
1	1												

\dagger 2. Find the state of inputs A, B and C for which the circuit of Figure 3 has output Z at logic 1.

Figure 3:
3. The NMOS field-effect transistor with characteristics shown in Figure 4 (b) is connected into the inverter circuit shown in Figure 4(a).

Figure 4:
(a) Draw a load line on Figure $4(\mathrm{~b})$ and determine the output voltage V_{o} corresponding to input voltages of 0 V and +10 V .
(b) Calculate the power dissipated in the 500Ω resistor and the transistor for each input voltage.
(c) The capacitor C is now connected to the output of the circuit, as shown in the figure. V_{i} is initially 10 V . At time $t=0, V_{i}$ falls to 0 V , switching the transistor off. Show that V_{o} as a function of time is $10-9 \exp (-t /(C R))$. If $C=40 \mathrm{pF}$, find the time for V_{o} to rise from 1 V to 8 V .
4. Figure 5(a) shows a NMOS gate where a second transistor T_{1} replaces the load resistor. The characteristics of T_{1} are identical to that shown in Figure 4(b). Using the fact that $V_{D S}=V_{G S}$ for this transistor, construct a graph showing the relationship between $V_{D S}$ and $I_{D S}$ for T_{1}.

Show that T_{1} is equivalent to a voltage drop V_{1} in series with a resistor R_{1}, so that the circuits of Figures 5(a) and 5(b) are identical. Find V_{1} and R_{1}.

Figure 5:

Draw a new load line on Figure $4(\mathrm{~b})$ to represent the possible working points of T_{2}. Assume $V_{D D}=10 \mathrm{~V}$, and hence find the output voltage X corresponding to input voltages of 2 V and 10 V .

The table shown in Figure 5(c) summarises the operation of the circuit; complete the second line.
\dagger 5. Figures 6(a) and 6(b) show simple extensions of the inverter circuit of Figure 5(a). By completing the tables,

Inputs		Table for (a)		
A	B	T_{2}	T_{3}	X
0	0			
0	1			
1	0			
1	1			

Inputs		Table for (b)		
A	B	T_{4}	T_{5}	Y
0	0			
0	1			
1	0			
1	1			

determine what function the outputs X and Y are of the inputs A and B.

Figure 6:

* 6. A CMOS (Complementary MOS) inverter circuit is shown in Figure 7(a) in which the 500Ω resistor of Figure 4 (a) has been replaced by a PMOS transistor T_{1} with characteristics shown in Figure 7(b). The characteristic of the NMOS transistor is repeated as Figure 7(c).
(a) Determine the output voltages V_{o} corresponding to input voltages V_{i} of 0 V and 10 V (Low and High inputs).
(b) Check that the power dissipated in each transistor for high and low inputs is negligible.
(c) If, due to a faulty lead, the input is floating and becomes +4 V , determine V_{o}, the power dissipated in each transistor, and the power taken from the supply.

(a)

(b) PMOS Characteristics
(c) NMOS Characteristics

Figure 7:
7. Use Boolean algebra to prove the following identities:

$$
\begin{aligned}
A \cdot B \cdot C+A \cdot B \cdot \bar{C} & =A \cdot B \\
A \cdot(\bar{A}+B) & =A \cdot B \\
A \cdot B+\bar{A} \cdot C & =(A+C) \cdot(\bar{A}+B) \\
(A+C) \cdot(A+D) \cdot(B+C) \cdot(B+D) & =A \cdot B+C \cdot D
\end{aligned}
$$

\dagger 8. The circuit of Figure 8 does not make efficient use of logic gates. Write a Boolean expression for Z and hence show how Z can be realised more simply.
9. A logic 'voter' circuit has four inputs A, B, C, D and one output V. The output is to be logic 1 if any three or all four inputs are at logic 1. Design a circuit using AND and OR gates to satisfy this requirement.

Figure 8:

* 10. Devise circuits to solve question 9 if
(a) NAND gates only;
(b) NOR gates only are to be used.

HINT for part (b): consider when no output is wanted from the circuit and write a new Boolean expression. Then use de Morgan's theorem.
11. Following the examples on pages 67 and 68 of handout 1 , write a VHDL definition of an OR gate.

Using this definition, and the gates defined in the handout, produce a VHDL description of the circuit shown in Figure 3.

R W Prager
R V Penty
Lent 2014

Revision tripos questions

2003 -
2004 -
2005 - Paper 3 Q8, Q9
2006 -
2007 - Paper 3 Q8
2008 -
2009 - Paper 3 Q9 (a) (i) (ii)

ANSWERS

1.

Inputs		Outputs	
A	B	X	Y
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

2. $Z=1$ for $A B C$ in the states 000,001 and 101.
3. $10 \mathrm{~V}, 1 \mathrm{~V}, 0 \mathrm{~mW}, 0 \mathrm{~mW}, 162 \mathrm{~mW}, 18 \mathrm{~mW}, 30.1 \mathrm{~ns}$.
4. $1.5 \mathrm{~V}, 395 \Omega, 8 \mathrm{~V}, 1.2 \mathrm{~V}, 1 \mathrm{ON} 0$.
5. NAND, NOR.
6. $10 \mathrm{~V}, 0 \mathrm{~V}$, approx $9 \mathrm{~V}, 63 \mathrm{~mW}, 7 \mathrm{~mW}, 70 \mathrm{~mW}$.
7. $Z=A+B$
8. $\quad V=A . B \cdot C+A . B \cdot D+A . C \cdot D+B . C \cdot D$
9.

$$
\begin{aligned}
V & =\overline{\overline{(A \cdot B \cdot C)} \cdot \overline{(A \cdot B \cdot D)} \cdot \overline{(A \cdot C \cdot D)} \cdot \overline{(B \cdot C \cdot D)}} \\
V & =\overline{\overline{(A+B)}+\overline{(A+C)}+\overline{(A+D)}+\overline{(B+C)}+\overline{(B+D)}+\overline{(C+D)}}
\end{aligned}
$$

