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ENGINEERING SECOND YEAR
Part IB Paper 7: Mathematical Methods (2)

Linear Algebra

Examples Paper 1

Straightforward questions are marked T Tripos standard questions are marked *

Apart from the questions marked MATLAB, all questions can be done by hand.

Vector Spaces

1+ Show that the vector space spanned by [1 1 0 ]t and[0 1 0.5 ]t is the same as that

spanned by [ 2 1 —O.S}tand[l -1 —l]t.

2t A vector space S is spanned by the vectors [1 2 0 ]t, [-1 31 ]t and [3 1 -1 ]t .
(a) Determine the dimension of § and find a basis.

(b) Determine whether the vector [ 1 0 1 ]t lies in S.

(c¢) Find a basis of the space T consisting of all vectors orthogonal to every vector in S.

(d) Express [1 0 l]t as s+t wheresisinSandtisin 7.

3 The vectors [1 0 0] “and [0 01 ]t span the column space of the 3 x 2 matrix A.

What is the rank of A 7 Show that the most general form for A is
1 0

oo[aZ]
0o 1|-°

provided ad - cd = 0. Explain why this condition is necessary.
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Matrix manipulation and LU Decomposition

21 611 1 1 6
4+ Finda3 x2matrix Dsuchthat AB = |3 2 1 2 1 = |2 1
4 1 316 2 1 3

$a L DN

}D =CD

Find a 3 x 3 matrix P such that A = CP. If B = Q D, what is the relationship between P and Q?

5t Perform the LU factorisation of:

2 1
(a) o2 (b) 6 4
a
-3 3 1
-2 0
6 Perform LU factorisation with partial pivoting (i.e. decomposition of the form PA = LU) on
the matrix
-1 2 0
1 1 4
2 -2 4

What is the matrix M, where A = MU ?

7.+ (OCTAVE or MATLAB)

(20 2.1 —-46 3.1 -25]
1.6 84 12 -08 54
A={40 1.0 20 30 1.0
12 19 =22 10 =22
08 66 -08 -1.0 -2.8]

Using elimination with partial pivoting, which rows of A would be swapped before elimination
starts? Use the LU decomposition in OCTAVE or MATLAB to find the matrices, L, Uand P. Are

any other rows swapped during the elimination?
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Solution of equations and fundamental sub-spaces

8* Complete the LU factorisation of

1 2 01
A={0 1 1 0
1 311
What is the general solution, x, to Ax = b if:
1 1
(i b={ 2], (@{)b=]|2
3 4
9 Find a basis for each of the four fundamental subspaces of the matrix A in Q 8.

10 Write down a matrix with the required property, or explain why no such matrix exists, for:

1 0

1 1
(a) Column space contains |[0| , | 0| and row space contains [J , L’}
0 1
1 1
(b) Column space has basis |1| and nullspace has basis |2
1 1
(c) Column space = % | row space = %° .
2 2 1
11 Thematrix A=|3 4 2 | isextended to form a 6 x 3 matrix using the identity matrix I.
1 -1 3/2

2 2 1 1 0 0
[ATI]=]|3 4 2 010
1 -1 3/2 0 0 1
Manipulate the rows of the extended matrix using scaling and addition and subtraction of rows until
it is in the form [I B ]. Show that A B =I and explain why this method of finding the inverse

works.



12*  The figure below shows an electrical network.

—>
i1

Write down a matrix equation Ax = b which calculates the potential differences across the resistors
b; (in the direction shown by the arrows), in terms of the actual potentials at the nodes, x; . For
example:

x4 —x3 =byy

Each entry in the matrix A will only contain -1, 0 or 1.

(a) For existence of a solution to Ax = b, b must lie in the column space of A, and therefore have
no component in the left-nullspace. Calculate a basis for the left-nullspace of A . What is the
physical interpretation of b not having a component in the left-nullspace? (Remember Kirchoff's

Voltage Law.)

(b) In general a solution x of Ax = b can have any component of the nullspace of A added to it
without affecting b. Calculate a basis for the nullspace of A,

What is the physical interpretation of the nullspace?
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13* A matrix A has an LU decomposition given by PA = LU, where

01 00 1 0 0 0 -2 21 2 -4
1 0 00 05 1 0 -
P= 5 L— 0 B U: 0 1 2 0 1
0 01 0 I =05 1 0O 0 00 2 O
0 0 0 1 05 05 05 1 0 0 0 0 O
(a) Show that the vector
~1
2
b=
5

lies in the column space of A .

(b) Find the most general solution x to the equation Ax =b.

(c) Explain, without calculation, how you would find all vectors b for which Ax = b does not have

a solution.

Relevant Paper 7 IB Tripos Questions:
2002 Q4 (a-c), 2003 Q4, 2004 Q4, 2005 Q4 & 5, 2006 Q5a, 2007 Q4a, 2008 Q5 (a-c), 2010 Q5

Answers

N.B. Remember that the basis of a vector space is not unique, so you may get different
answers to some of those listed here and still be correct.

2 8/15 7/15
2. (a) Dimension 2. Any 2 of the vectors. (b)No. (¢} |-1| (d)s=|7/30| ¢=|-7/30
5 5/6 1/6

- O
o
il
oo N
C



-05 05 1 2 -2 4 0 01 1 0
6 M={05 1 0} U={0 2 2! P={0 1| 0] L=| 05 0
1 0 0 0 0 1 1 00 -0.5 05 1
7 Rows 4 and 5 are swapped in addition to rows 1 and 3.
- -3 2 -1
1 00 1 2 0 1 5 {
8 L={0 1 0,U=]0 1 1 0}, (ai) 0 +x3 | + x4 (a.ii) no solution
I 11 00 00 '
- 0 0 1
2] [-1 1] [0]
1 2 | : 0
9. Nullspace aE Rowspace ol 11 , Column space [0, |1
1 1
0 |1 1 0]
-1
Left-nullspace | -1
1
1 0
10. (a) |0 O], (b-c) no matrix exists.
0 1
2 -1 0
n. B=|-> L 1
8 2 4
7o 1
L 4 2
-1 1 0 ol - [&] 17 [1]
X1 |
0 -1 1 0 by 1 | :
X
1220 0 -1 1 2= by | (a) left-nullspace | 1|, | 0| (b) nullspace :
pY
10 0 -1/ | 1| |0
X4 1
10 -1 0] = | bs 0] 1]

13. (a) Find ¢ = Ux by solving L¢ = Pb . Then show that Ux = ¢ can be solved.

[-27  [-1.5] -1

-2 -2 1

b)) x= 0 |+x31 1 |+x5] 0
1 0 0

Lo Lo |1]

J P Jarrett
Lent 2014
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