

Engineering Tripos Part IB

SECOND YEAR

IB Paper 6: Information Engineering COMMUNICATIONS

Examples Paper 9: Digitisation, Digital Modulation, Multiple Access

- 1. (a) An ADC with a -1 to +1 volt signal range and 5-bit resolution is connected to a matching DAC. Given input x(kT) volts, the ADC outputs integer code value m ($-16 \le m \le +15$) such that m/16 is the nearest multiple of 1/16 to x(kT) and the DAC output voltage is then m/16V. For example, input sample x(kT) = 0.1V gives ADC output code m = 2 and output 2/16 = 0.125V. The system is first tested using the signal $x(kT) = 0.9 \sin(0.1k\pi)$. [The values of x(kT) for $k = 0, 1, \ldots, 5$ are therefore 0, 0.2781, 0.5290, 0.7281, 0.8560, 0.9000]. It is then tested with a second signal $x_2(kT) = 0.1x(kT)$. Compute the actual mean-squared quantisation error which results in each case.
 - (b) Now suppose that the same signals are digitised instead using a companded ADC and matching DAC. These preserve the sign of each input sample x(kT) but cause the *magnitude* of x(kT) to be replaced by the nearest value from the following list:

0, 0.0280, 0.0561, 0.0841, 0.1122, 0.1346, 0.1615, 0.1938, 0.2326, 0.2791, 0.3349,

0.4019, 0.4823, 0.5787, 0.6944, 0.8333

Again, compute the mean-squared quantisation error for the two test signals.

(c) Re-express the results of (a) and (b) as Signal-to-Noise ratios in dB.

[A note, for information only: the first five quantisation levels in part (b) are linearly spaced, with spacing 0.028, while the remaining values are in a geometric progression, with each value a factor of 1.2 larger than its predecessor].

2. A cable has a first-order low-pass frequency response

$$H(j\omega) = \frac{0.1}{1 + j\omega\tau}$$

and hence impulse response

$$h(t) = \begin{cases} \frac{0.1}{\tau} e^{-\frac{t}{\tau}} & t > 0\\ 0 & t \le 0. \end{cases}$$

Binary signals are to be transmitted over the cable at a rate of $R = \frac{1}{T}$ bit/s, using rectangular pulses of duration T seconds and amplitude +A V to transmit a 1 and 0 V to transmit a 0.

- (a) Compute the step response, namely, the output voltage V_1 when the input is a long run of data 1s.
- (b) Assume that for satisfactory operation it is necessary, when a single 1 pulse is input after a long run of 0s, for the output to reach at least 80% of V_1 . By computing the cable output when a single 1 pulse is input, determine the maximum allowable transmission rate R.
- 3. Consider the unit-energy sinc pulse

$$p(t) = \sqrt{\frac{1}{T}} \operatorname{sinc}\left(\frac{\pi t}{T}\right).$$

For any integer k, define $\phi_k(t) = p(t - kT)$. Show that the signals $\{\phi_k(t)\}$ are orthonormal, i.e.,

$$\langle \phi_l, \phi_m \rangle := \int_{-\infty}^{\infty} \phi_l(t) \phi_m(t) dt = \begin{cases} 1 & \text{if } l = m, \\ 0 & \text{otherwise} \end{cases}$$

Hint: Use the Multiplication Theorem of Fourier Transforms in Signal and Data Analysis Handout 4.

4. Consider Pulse Amplitude Modulation (PAM), where the information symbols X_1, X_2, \ldots modulate a pulse p(t) to produce the baseband waveform

$$X(t) = \sum_{k} X_k \, p(t - kT).$$

Suppose that each symbol X_k is drawn from the set $\{-3A, -A, A, 3A\}$. Assume that each X_k is equally likely to be any of the four symbols in the set. The waveform X(t) is transmitted over an AWGN channel, and the discrete-time received sequence is

$$Y_k = X_k + N_k$$

where N_k is additive Gaussian noise with mean zero and variance σ^2 .

- (a) Sketch the decision regions that minimise the probability of detection error.
- (b) Obtain the probability of detection error when the transmitted symbol is -3A. Note that the probability of detection error is the same when the symbol +3A is transmitted.
- (c) Obtain the probability of error when the transmitted symbol is -A (or A). Combine this with part (b) to obtain an expression for the overall probability of error P_e .
- (d) What is the average energy per symbol in terms of A? What is E_b , the average energy per bit?
- (e) Express the probability of error in terms of the ratio $\frac{E_b}{\sigma^2}$.

5. Error-correcting codes

- (a) Consider a repetition code in which each information bit is repeated five times and transmitted over a binary symmetric channel (BSC). Assuming the BSC has crossover probability ϵ , what is the probability of bit error? What is the rate of the code?
- (b) Now consider a (7, 4) Hamming code which maps k = 4 information bits to a length n = 7 codeword.
 - i) Suppose that a codeword is transmitted over a BSC, and the received sequence is $\mathbf{r} = [1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1]$. Decode the received sequence to a codeword.
 - ii) Now suppose that the all-zeros codeword [0 0 0 0 0 0 0] is transmitted and the received sequence is [0 0 1 0 0 1 0], i.e., the channel has flipped two bits. Decode the received sequence to a codeword, and observe that the decoded codeword is not the transmitted one. This is because the Hamming code can only correct a single bit error.
 - iii) When a Hamming code is used, a decoding error occurs if the channel flips two or more of the transmitted bits. Calculate the probability of decoding error when a 7-bit Hamming codeword is transmitted over a BSC with crossover probability ϵ .

- 6. Consider a multiple-access channel with K users and a total bandwidth B.
 - (a) Explain how FDMA, TDMA and CDMA work, and outline the main differences between the three.
 - (b) How many users can be accommodated in an FDMA system with total bandwidth 20MHz, if each user employs binary Pulse Amplitude Modulation (± 1 symbols) with rectangular pulses at a rate of R = 200kbit/s? (assume that the carrier frequency is $\gg 20$ MHz, and that the band-pass spectrum of each user does not cause interference beyond the first side lobe).
 - (c) Show that the signature signals in the Figure below are orthogonal in a CDMA system with K = 4 users.

Answers:

- 1. The exact numerical results will depend on whether you calculated $x(kT) = 0.9 \sin(0.1k\pi)$ or used the rounded values given in the question;
 - (a) MSE for x(kT): 5.57 × 10⁻⁴: MSE for $x_2(kT)$: 3.77 × 10⁻⁴
 - (b) MSE for x(kT): 1.2×10^{-3} : MSE for $x_2(kT)$: 3.15×10^{-5}
 - (c) SNRs: linear ADC: 28.6 dB, 10.3dB; companded ADC: 25.2 dB, 21.1 dB.

2. a)
$$0.1 \times A$$
, b) $0.62/\tau$.

3.

4. b)
$$\mathcal{Q}\left(\frac{A}{\sigma}\right)$$
; c) $2\mathcal{Q}\left(\frac{A}{\sigma}\right)$, overall $P_e = \frac{3}{2}\mathcal{Q}\left(\frac{A}{\sigma}\right)$, d) $E_s = 5A^2$, $E_b = 2.5A^2$, e) $\frac{3}{2}\mathcal{Q}\left(\sqrt{\frac{2E_b}{5\sigma^2}}\right)$

5.

6. b) 25 users

Lent 2014