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ENGINEERING FIRST YEAR 
Part IA Paper 1: Mechanical Engineering 

MECHANICAL VIBRATIONS 
Examples paper 3 

 
Straightforward questions are marked with a  †  
Tripos standard questions are marked  * . 

Systems with two or more degrees of freedom 
Throughout this examples paper, assume that displacements are small and neglect the effects of 
damping. 
 
Free vibration 
†1. How many degrees of freedom have each of the dynamic systems shown in Fig. 1? 
 

 
(a)  Planar double pendulum 

 
(b)  U-tube manometer  

(c)  Point mass in rigid frame 
 

 
(d)  Spring-mounted engine 

block 

 
 

(e)  Planar articulated-vehicle 
model with pin joint 

 

 
 

(f)  Tacoma Narrows bridge 
 

Fig. 1 
 
†2. For the system shown in Fig. 2, show that the equation of free motion can be written in the form 

M ÿ  +  K y   =  0 
 

where M  =  
⎣
⎢
⎡

⎦
⎥
⎤m1 0

0 m2
   ,      K  =  

⎣
⎢
⎡

⎦
⎥
⎤k1+k2 –k2

–k2 k2
        and       y   =  

⎣
⎢
⎡

⎦
⎥
⎤y1

y2
   . 

If the displacements in the jth normal mode of free vibration are given by 
y j  =  Y j cosωjt  , 

deduce that each natural frequency  ωj  and its corresponding normal mode  Y j  must satisfy 
[ K  –  ωj2 M ] Y j  =  0  . 

Hence find the natural frequencies and normal modes for the case  k1 = k2 = k  and  m1 = m2 = m  .  
Sketch the two mode shapes. 
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   Fig. 2 
 
3. Two rigid discs with moments of inertia  J  and 2J  are mounted on three light elastic shafts of 
torsional stiffness  k ,  k ,  and 2k  as shown in Fig. 3.  The angles of rotations of the discs from their 
equilibrium positions are  θ1  and  θ2  respectively.  Show that the equation of free torsional vibration of 
the system can be written in the form 

Mθ̈_     +  K θ _    =  0 
 

where M =  ⎣⎢
⎡

⎦⎥
⎤J 0

0 2J    ,       K  =  ⎣⎢
⎡

⎦⎥
⎤2k –k

–k 3k         and       θ _    =  
⎣
⎢
⎡

⎦
⎥
⎤θ1

θ2
   . 

 
Using the method outlined in Q2 above, find the natural frequencies and normal modes.  Sketch the 
mode shapes. 
Type in the following Matlab program to check your answers: 
K=[2 -1;-1 3]; 
M=[1 0;0 2]; 
[V,D]=eig(K,M); 
for n=1:2 
  mode=V(:,n); 
  mode=mode/mode(1); 
  freq2=D(n,n); 
  disp(sprintf('Mode %i has squared frequency %g and mode [%g, %g]',n,freq2,mode)) 
end 
Do you understand the program?  “eig” calculates eigenvalues and vectors: type “help eig” in the Matlab 
command window to see details. 
Save your program, to use again in question 5. 

   Fig. 3 
 
†4. Determine by inspection the normal modes of vibration of the systems shown in Fig. 4.  Hence 
calculate the natural frequencies of each system.   
Describe the motion of the two masses in Fig. 4(b) for the following sets of initial conditions: 
 (i) y1 = y2 =1  and !y1 = !y2 = 0 ; 
 (ii) y1 =1, y2 = 0  and !y1 = !y2 = 0 ; 
 (iii)* y1 = y2 = 0  and !y1 =1, !y2 = 0 ; 
 

k 1
k 2

m 1 m 2

y 2y 1

k k 2k

J 2J

θ 1 θ 2
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(a)       (b)   

Fig. 4 
 
*5. Two equal masses  m  are attached to a third mass  M  by two equal springs each of stiffness  k   
as shown in Fig. 5.  Derive the equations of motion for the system in terms of the three coordinates  y1,  
y2  and  y3  as shown. 
Calculate the three natural frequencies and corresponding normal modes, and sketch the mode shapes.  
(Hint:  two of the natural frequencies and mode shapes can be determined easily by inspection.) 
What is the significance of a zero natural frequency? 
Modify the program from question 3 to check your answers.  Try different ratios M/m. 
 

 
Fig. 5 

 
Forced harmonic vibration 
(Ignore any transient response throughout) 
 
6. Show that the equation of motion for the system shown in Fig. 6 may be written in the form 

M ÿ  + K y   =  f 
 

where M  =  ⎣⎢
⎡

⎦⎥
⎤m 0

0 m    ,       K  =  ⎣⎢
⎡

⎦⎥
⎤k –k

–k k    ,     y   =  
⎣
⎢
⎡

⎦
⎥
⎤y1

y2
       and       f   =  ⎣⎢

⎡
⎦⎥
⎤f

0    . 

For free motion  (f  =  0)  find the natural frequencies and normal modes (by inspection). 
When  f  =  F cosωt , the forced harmonic response is given by  y  =  Y cosωt .  Deduce that 

Y  = K −ω2M"
#

$
%
−1 F

0

"

#
&

$

%
' . 

Hence derive expressions for the response amplitudes  Y1  and  Y2  and sketch their variation with 
frequency  ω  .  (It is easiest to plot the non-dimensional quantities  kY1/F  and  kY2/F  against non-
dimensional-frequency squared  ω2m/k .  Give due regard to signs.) 
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Fig. 6 

*7. Figure 7 shows a model of a caravan suspension.  The mass of the caravan body is  m1  and that 
of the axle assembly is m2  .  The corresponding vertical displacements are  y1  and  y2 .  The stiffness of 
the suspension springs and of the tyres are  k1  and  k2   respectively.  Road roughness is represented by 
the displacement  x  of the bottom of the tyre spring as shown. 
Show that the equation of motion may be written in the form 
 

⎣
⎢
⎡

⎦
⎥
⎤m1 0

0 m2
 
⎣
⎢
⎡

⎦
⎥
⎤ÿ1

ÿ2
  +  

⎣
⎢
⎡

⎦
⎥
⎤k1 –k1

–k1 k1+k2
 
⎣
⎢
⎡

⎦
⎥
⎤y1

y2
   =  ⎣⎢

⎡
⎦
⎥
⎤0

k2x    . 
 

A particular caravan has  m 1 = 500 kg ,  k 1= 20 kN/m  and  m 2 = 40 kg ,  k 2= 160 kN/m .  It is towed 
at a constant velocity  V  along a bumpy road whose surface profile varies sinusoidally with an 
amplitude  X  of 25 mm and a wavelength  L  of 1.25 m  so that the tyre displacement input is  

x  =  X cosωt , where   ω  =  
2πV

L   . 

The caravan displacement and that of its axle are 
y 1 =  Y1 cosωt    and y 2 =  Y2 cosωt . 

Find the amplitude of caravan vibration Y1  when the velocity  V = 50 km/h .  Find also the amplitude of 
the axle vibration  Y2 .  Why is the axle motion so large?  [Hint: calculate the two natural frequencies.]  
Comment on the use of shock absorbers. 
 

 
Fig. 7 
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*8. The vibration of a pedestrian footbridge in its fundamental bending mode may be modelled as a 
mass  m1 = 10,000 kg supported on a spring of stiffness  k1 = 2.7 MN/m  so that the natural frequency of 
the bridge in this mode is 2.6 Hz.   
A vibration absorber is attached at the centre of the bridge to prevent excessive amplitudes of vibration 
when hooligans jump up and down on the bridge.  The absorber comprises a mass  m2 supported on a 
spring of stiffness  k2  as shown in Fig. 8. 
Derive the matrix equation for vertical motion when the hooligan exerts a force  f  on the bridge. 
If  f  = F cosωt, derive an expression for the amplitude of vibration of the bridge Y1  as a function of  ω.   
It is desired that there is no bridge motion when it is excited at  ω  = Ω .  Determine the required 
absorber stiffness in terms of  the absorber mass and  Ω . 
For the case  m2 = 1000 kg and k2 = 270 kN/m, calculate the two natural frequencies of the system.  
Sketch the variation of  | k1Y1 /F |  with  ω , both with and without the absorber. 
What is the effect of adding damping to the absorber? 
 
 
 

 
 

Fig. 8 
 
 
Eight such absorbers are fitted to the cycle bridge over the Cambridge railway station.  Each absorber 
comprises a 100 kg sprung mass in an oil-filled enclosure – the oil provides damping. 
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Answers 
 
1. 2,  1,  3,  6,  4,  ∞ 

2. ω12 = 0.382 
k
m   ,  

⎣
⎢
⎡

⎦
⎥
⎤Y1

Y2
  = ⎣⎢

⎡
⎦⎥
⎤1

1.618    ω22 = 2.618 
k
m   ,  

⎣
⎢
⎡

⎦
⎥
⎤Y1

Y2
  = ⎣⎢

⎡
⎦⎥
⎤1

-0.618   

3. Use the Matlab program! 

4. (a) ω12 = 
4k
m    , ω22 = 

2k
m   (b) ω12 = 

k
m   , ω22 = 

2k
m   

  (i) y1 = y2 = cos ω1t ;  (ii) y1 = 0.5 ( cos ω1t  + cos ω2t  ) ; 

  (iii) y1 = 0.5 ( 
1
ω1

 sin ω1t  + 
1
ω2

 sin ω2t  ) ;  y2 = 0.5 ( 
1
ω1

 sin ω1t  – 
1
ω2

 sin ω2t  ) 

5. 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤m 0 0

0 M 0
0 0 m

  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ÿ1

ÿ2
ÿ3

   +   
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤k -k 0

-k 2k -k
0 -k k

  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤y1

y2
y3

   =  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0

0
0

  

  Use the Matlab program to check answers. 
  Zero natural frequency corresponds to rigid-body motion.  Mode shape is always [1, 1, 1, ...] 

6. ω12 = 0  , Y1  =  ⎣⎢
⎡
⎦⎥
⎤1

1   (rigid body motion)   ω22 = 
2k
m    , Y2  =  ⎣⎢

⎡
⎦⎥
⎤1

-1   

 Y1 = – 
1 – ω2m/k

ω2m/k [2 – ω2m/k]  
F
k    Y2 =  

–1
ω2m/k [2 – ω2m/k]  

F
k   

7. 2.24 mm –270 mm input at 11.1 Hz is just above the 'wheel-hop' frequency (10.7 Hz) 

8. 
⎣
⎢
⎡

⎦
⎥
⎤m1 0

0 m2
 
⎣
⎢
⎡

⎦
⎥
⎤ÿ1

ÿ2
  +  

⎣
⎢
⎡

⎦
⎥
⎤k1+k2 –k2

–k2 k2
 
⎣
⎢
⎡

⎦
⎥
⎤y1

y2
   =  ⎣⎢

⎡
⎦⎥
⎤f

0   

 Y1 = 
(k2 – ω2m2)F

Δ    where  Δ =  m1m2ω4 – [m2(k1 + k2) + m1k2]ω2 + k1k2 

 k2 = m2Ω2  ω1 = 14.0 rad/s ω2 = 19.2 rad/s 

 
k1Y1

F     = 
(Ω2 – ω2)Ω2

(ω12 – ω2)(ω22 – ω2)      

Damping reduces peakiness of the two resonances.  Instead of large bridge motion, we have large 
motion of the absorber mass.  It is often easier to add damping to an absorber than to a bridge. 
 

 
For further practice, the following Tripos questions from Paper 1 are suitable: 
 2013 Q12; 2012 Q11; 2011 Q12; 2010 Q10; 2009 Q12; 2008 Q9; 2007 Q12 

 
J Woodhouse 
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