Engineering

FIRST YEAR

Part IA Paper 4: Mathematics

ISSUED ON

Examples paper 5

1 3 NOV 2013

(Elementary exercises are marked †, problems of Tripos standard *)

Revision question

A rectangular sheet of steel of dimensions $a \times b$ is to be made into an open-topped box by cutting a square of side h from each corner and folding the four sides up. Find the value of h that allows the maximum volume of box to be made from a given sheet. Hence show that, if the sheet is a square with a side of 1 m, the maximum volume is 2/27 m³.

Partial Derivatives

1† For each of the following functions
$$f(x, y)$$
, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$:

(a) $f = \cos^2 x + \sin^2 y$ (b) $f = \exp(-y^2) \tan x$

(c) $f = \ln (x^2 + y^2)$ (d) $f = \cosh (x/y)$

2 An area of hillside has a height in metres which is well approximated by the function

$$h(x, y) = 50 + 10 \left[8 + \sin \frac{x}{1000} \right] \left[10 - \cosh \left(\frac{y}{1000} - 1 \right) \right]$$

where x and y are distances in metres from a certain point, P, in the easterly and northerly directions respectively.

- (a) Calculate the gradients of the hillside at P experienced by walking (i) due east and (ii) due north.
- (b) Use the partial derivative formula to estimate the height above P of the point, Q, which is 40 m east and 60 m north of P.
- (c) Compare this with the exact difference in height between P and Q.

Linear Difference Equations

3 Find the general solution of the difference equation

$$a_{n+1} = a_n + 2 a_{n-1} - 2 a_{n-2} . (1)$$

Find the particular solution which satisfies the condition $a_0 = a_1 = 0$, $a_2 = 1$.

Using this solution and Matlab/Octave, evaluate a_3, \ldots, a_{20} . Verify that the values agree with those obtained by repeated use of equation (1), starting from the specified values of a_0, a_1 and a_2 .

Hints

Matlab/Octave allows us to evaluate the solution at multiple values of n with ease. In this case, we are interested in the range 0 to 20, so we start by setting up a vector of these values as follows: n = [0 : 20]. Now we can do element-by-element arithmetic to calculate a for each value of n. For example, try sqrt(2).^n and see what you get. Extend this principle to find a vector a containing the solution at each value of n. Alternatively, using equation (1) and starting with $a = [0 \ 0 \ 1]$, we can add the next value onto the end of a as follows: $a = [a \ a(n) + 2*a(n-1) - 2*a(n-2)]$. All we need to do is put this line of code inside a for loop that counts n from 3 to 20. You should find that you get the same sequence either way, though one of the methods is affected by small numerical rounding errors. Why?

4* A large number of cantilevers, whose tips are joined by springs, are connected as shown. The stiffness of each cantilever (measured at its tip) is k_1 , and each spring has modulus k_2 , i.e. the vertical force necessary to move the end of a cantilever by an amount δ has magnitude $k_1\delta$ and the force necessary to compress, for example, the first spring has magnitude

$$k_2(\delta_1 - \delta_2).$$

A load P is applied to the tip of the first cantilever, producing deflections $\delta_1, \delta_2 \dots \delta_n \dots$, where δ_n is the deflection of the *n*'th cantilever. Show by considering equilibrium of the *n*'th cantilever that

$$\delta_{n-1} - (2 + k_1 / k_2) \delta_n + \delta_{n+1} = 0.$$

Find the general solution of this equation for the case $k_1 = k_2 = k$.

Deduce that, if $\delta_n \to 0$ as $n \to \infty$, then

$$\delta_n = \delta_1 \left[\frac{3 - \sqrt{5}}{2} \right]^{n-1}$$

and, using this expression for δ_n , find the ratio P / δ_1 .

Matrices

5† Find the determinant and (if it exists) the inverse of each of the matrices

	Γ	2	0	1 .	1	۲ 1	2	3 -		Γ1	2	3	1
(i)		0	1	0	(ii)	4	5	6	(iii)	2	1	2	.
	L	1	0	1		2	1	0		3	2	1	

6† x_1, x_2, y_1 and y_2 , the components of the vectors \underline{x} and \underline{y} , satisfy the simultaneous equations

 $3 x_1 + 2 x_2 = 5 y_1 - y_2$ $5 x_1 - 4 x_2 = y_1 - 3 y_2 .$ Find a matrix C such that $\underline{x} = C \underline{y}$.

where Tr(), the

7 The 3×3 matrices S and U satisfy $S = S^t$ and $U = -U^t$, where (.)^t denotes the transpose. Show that

Tr (SU) = 0,
trace of a matrix, is defined as the sum of the diagonal elements, i.e.
Tr (A) =
$$\sum_{i=1}^{3} A_{ii}$$

- $8(a)^{\dagger}$ Find the 2 × 2 matrices which represent (i) an anticlockwise rotation of 90° followed by a reflection in the line which bisects the angle between the positive axes, (ii) a reflection in the line which bisects the angle between the axes followed by a rotation by 180°.
- (b) Find the 3 × 3 matrices which represent (i) a rotation of an object by 90° about the x axis followed by a rotation of 90° about the y axis, (ii) a rotation of 90° about the y axis followed by a rotation of 90° about the x axis.
 [Rotations are taken as positive if they appear clockwise when viewed outwards along the positive axis in question.]
- 9 Find the third column which makes the matrix $\begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & .\\ 1/\sqrt{3} & 0 & .\\ 1/\sqrt{3} & -1\sqrt{2} & . \end{bmatrix}$ orthogonal, with

determinant +1. Verify that the *rows* of this matrix also form an orthonormal set. (i.e. a set of mutually orthogonal unit vectors).

- 10(a)[†] In a coordinate system C_1 two vectors are represented by $\underline{x} = [1, 0, 2]^t$ and $\underline{y} = [3, -2, 1]^t$. Calculate the representations $\underline{x}', \underline{y}'$ of the same vectors in a coordinate system C_2 which is related to C_1 by the transformation $\underline{x}' = Q \underline{x}$ (or $\underline{y}' = Q \underline{y}$), Qbeing the orthogonal matrix obtained as the solution to question 9. Verify that the scalar products $\underline{x} \cdot \underline{y}$ and $\underline{x}' \cdot \underline{y}'$ are equal.
- (b) Prove that the result $\underline{x} \cdot \underline{y} = \underline{x}' \cdot \underline{y}'$ holds for any pair of vectors \underline{x} and \underline{y} and any orthogonal transformation matrix Q, i.e. prove that the value of a scalar product is independent of any coordinate system used to evaluate it.

Suitable past Tripos questions: 2002 Q3b, 2004 Q3b, 2005 Q5 (long), 2006 Q3 (short), 2007 Q5ab (long), 2008 Q3 (short)

Answers

(a) $-2 \cos x \sin x$, $2 \sin y \cos y$ (b) $\sec^2 x \exp(-y^2)$, $-2y \tan x \exp(-y^2)$ 1 (c) $2x/(x^2+y^2)$, $2y/(x^2+y^2)$ (d) $\frac{1}{v} \sinh\left(\frac{x}{v}\right)$, $-\frac{x}{v^2} \sinh\left(\frac{x}{v}\right)$ 2 (a) At an angle of (i) $\tan^{-1}\frac{1}{11\cdot 8}$, (ii) $\tan^{-1}\frac{1}{10\cdot 6}$ (b) 9.02 m (c) 8.83 m, so 2% error 3 $A + B(\sqrt{2})^n + C(-\sqrt{2})^n; -1 + \frac{\sqrt{2}+1}{2\sqrt{2}}(\sqrt{2})^n + \frac{\sqrt{2}-1}{2\sqrt{2}}(-\sqrt{2})^n;$ 0, 0, 1, 1, 3, 3, 7, 7, ... 4 $C_1\left[\frac{3+\sqrt{5}}{2}\right]^n + C_2\left[\frac{3-\sqrt{5}}{2}\right]^n; \frac{1+\sqrt{5}}{2}k.$ 5. (i) 1; $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ (ii) 0; No inverse (iii) 8; $\frac{1}{8} \begin{vmatrix} -3 & 4 & 1 \\ 4 & -8 & 4 \\ 1 & 4 & -3 \end{vmatrix}$ 6. $\begin{vmatrix} 1 & -5/11 \\ 1 & 2/11 \end{vmatrix}$ 8. (a) (i) $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ (ii) $\begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix}$ (b) (i) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 9. $\begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix}$ 10. (a) $\underline{x}' = \begin{bmatrix} 1/\sqrt{3} - 2/\sqrt{6} \\ 1/\sqrt{3} + 4/\sqrt{6} \\ 1/\sqrt{3} - 2/\sqrt{6} \end{bmatrix}$ $\underline{y}' = \begin{bmatrix} \sqrt{3} - \sqrt{2} - 1/\sqrt{6} \\ \sqrt{3} + 2/\sqrt{6} \\ \sqrt{3} + \sqrt{2} - 1/\sqrt{6} \end{bmatrix}$

GNW/MPJ Michaelmas 2013