Part IA Paper 4: Mathematics

Examples paper 5

(Elementary exercises are marked \dagger, problems of Tripos standard *)

Revision question

A rectangular sheet of steel of dimensions $a \times b$ is to be made into an open-topped box by cutting a square of side h from each corner and folding the four sides up. Find the value of h that allows the maximum volume of box to be made from a given sheet. Hence show that, if the sheet is a square with a side of 1 m , the maximum volume is 2/27 m^{3}.

Partial Derivatives

$1 \dagger$ For each of the following functions $f(x, y)$, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$:
(a) $\quad f=\cos ^{2} x+\sin ^{2} y$
(b) $f=\exp \left(-y^{2}\right) \tan x$
(c) $\quad f=\ln \left(x^{2}+y^{2}\right)$
(d) $\quad f=\cosh (x / y)$

2 An area of hillside has a height in metres which is well approximated by the function

$$
h(x, y)=50+10\left[8+\sin \frac{x}{1000}\right]\left[10-\cosh \left(\frac{y}{1000}-1\right)\right]
$$

where x and y are distances in metres from a certain point, P , in the easterly and northerly directions respectively.
(a) Calculate the gradients of the hillside at P experienced by walking (i) due east and (ii) due north.
(b) Use the partial derivative formula to estimate the height above P of the point, Q, which is 40 m east and 60 m north of P.
(c) Compare this with the exact difference in height between P and Q .

Linear Difference Equations

3 Find the general solution of the difference equation

$$
\begin{equation*}
a_{n+1}=a_{n}+2 a_{n-1}-2 a_{n-2} \tag{1}
\end{equation*}
$$

Find the particular solution which satisfies the condition $a_{0}=a_{1}=0, a_{2}=1$.
Using this solution and Matlab/Octave, evaluate a_{3}, \ldots, a_{20}. Verify that the values agree with those obtained by repeated use of equation (1), starting from the specified values of a_{0}, a_{1} and a_{2}.

Hints

Matlab/Octave allows us to evaluate the solution at multiple values of n with ease. In this case, we are interested in the range 0 to 20 , so we start by setting up a vector of these values as follows: $\mathrm{n}=[0: 20]$. Now we can do element-by-element arithmetic to calculate a for each value of n. For example, try sqrt (2). \wedge^{n} and see what you get. Extend this principle to find a vector a containing the solution at each value of n. Alternatively, using equation (1) and starting with $a=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$, we can add the next value onto the end of a as follows: $a=[a a(n)+2 * a(n-1)-2 * a(n-2)]$. All we need to do is put this line of code inside a for loop that counts n from 3 to 20 . You should find that you get the same sequence either way, though one of the methods is affected by small numerical rounding errors. Why?

4* A large number of cantilevers, whose tips are joined by springs, are connected as shown. The stiffness of each cantilever (measured at its tip) is k_{1}, and each spring has modulus k_{2}, i.e. the vertical force necessary to move the end of a cantilever by an amount δ has magnitude $k_{1} \delta$ and the force necessary to compress, for example, the first spring has magnitude

$$
k_{2}\left(\delta_{1}-\delta_{2}\right)
$$

A load P is applied to the tip of the first cantilever, producing deflections $\delta_{1}, \delta_{2} \ldots \delta_{n} \ldots$, where δ_{n} is the deflection of the n^{\prime} th cantilever. Show by considering equilibrium of the n 'th cantilever that

$$
\delta_{n-1}-\left(2+k_{1} / k_{2}\right) \delta_{n}+\delta_{n+1}=0
$$

Find the general solution of this equation for the case $k_{1}=k_{2}=k$.

Deduce that, if $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\delta_{n}=\delta_{1}\left[\frac{3-\sqrt{5}}{2}\right]^{n-1}
$$

and, using this expression for δ_{n}, find the ratio P / δ_{1}.

Matrices

$5 \dagger$ Find the determinant and (if it exists) the inverse of each of the matrices
(i) $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
(ii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0\end{array}\right]$
(iii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1\end{array}\right]$.
$6 \dagger \quad x_{1}, x_{2}, y_{1}$ and y_{2}, the components of the vectors \underline{x} and \underline{y}, satisfy the simultaneous equations

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}=5 y_{1}-y_{2} \\
& 5 x_{1}-4 x_{2}=y_{1}-3 y_{2}
\end{aligned}
$$

Find a matrix C such that $\underline{x}=C \underline{y}$.

7 The 3×3 matrices S and U satisfy $S=S^{\mathrm{t}}$ and $U=-U^{\mathrm{t}}$, where (. $)^{\mathrm{t}}$ denotes the transpose. Show that

$$
\operatorname{Tr}(S U)=0
$$

where $\operatorname{Tr}()$, the trace of a matrix, is defined as the sum of the diagonal elements, i.e.

$$
\operatorname{Tr}(A)=\sum_{i=1}^{3} A_{i i}
$$

$8(a) \dagger$ Find the 2×2 matrices which represent (i) an anticlockwise rotation of 90° followed by a reflection in the line which bisects the angle between the positive axes, (ii) a reflection in the line which bisects the angle between the axes followed by a rotation by 180°.
(b) Find the 3×3 matrices which represent (i) a rotation of an object by 90° about the x axis followed by a rotation of 90° about the y axis, (ii) a rotation of 90° about the y axis followed by a rotation of 90° about the x axis.
[Rotations are taken as positive if they appear clockwise when viewed outwards along the positive axis in question.]

9 Find the third column which makes the matrix $\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{2} & \cdot \\ 1 / \sqrt{3} & 0 & \cdot \\ 1 / \sqrt{3} & -1 \sqrt{2} & \cdot\end{array}\right]$ orthogonal, with determinant +1 . Verify that the rows of this matrix also form an orthonormal set. (i.e. a set of mutually orthogonal unit vectors).
$10\left(\right.$ a) \dagger In a coordinate system C_{1} two vectors are represented by $\underline{x}=[1,0,2]^{\text {t }}$ and $y=[3,-2,1]^{t}$. Calculate the representations $\underline{x}^{\prime}, y^{\prime}$ of the same vectors in a coordinate system C_{2} which is related to C_{1} by the transformation $\underline{x}^{\prime}=Q \underline{x}$ (or $y^{\prime}=Q \underline{y}$), Q being the orthogonal matrix obtained as the solution to question 9 . Verify that the scalar products $\underline{x}, \underline{y}$ and $\underline{x}^{\prime}-y^{\prime}$ are equal.
(b) Prove that the result $\underline{x} \cdot \underline{y}=\underline{x}^{\prime} \cdot \underline{y}^{\prime}$ holds for any pair of vectors \underline{x} and \underline{y} and any orthogonal transformation matrix Q, i.e. prove that the value of a scalar product is independent of any coordinate system used to evaluate it.

Suitable past Tripos questions:
2002 Q3b, 2004 Q3b, 2005 Q5 (long), 2006 Q3 (short), 2007 Q5ab (long), 2008 Q3 (short)

Answers

1
(a) $-2 \cos x \sin x, \quad 2 \sin y \cos y$
(b) $\sec ^{2} x \exp \left(-y^{2}\right),-2 y \tan x \exp \left(-y^{2}\right)$
(c) $2 x /\left(x^{2}+y^{2}\right), 2 y /\left(x^{2}+y^{2}\right)$
(d) $\frac{1}{y} \sinh \left(\frac{x}{y}\right),-\frac{x}{y^{2}} \sinh \left(\frac{x}{y}\right)$

2 (a) At an angle of (i) $\tan ^{-1} \frac{1}{11 \cdot 8}$, (ii) $\tan ^{-1} \frac{1}{10 \cdot 6}$
(b) 9.02 m
(c) 8.83 m , so 2% error.
$3 \quad A+B(\sqrt{2})^{n}+C(-\sqrt{2})^{n} ;-1+\frac{\sqrt{2}+1}{2 \sqrt{2}}(\sqrt{2})^{n}+\frac{\sqrt{2}-1}{2 \sqrt{2}}(-\sqrt{2})^{n}$;
$0,0,1,1,3,3,7,7, \ldots$
$4 \quad C_{1}\left[\frac{3+\sqrt{5}}{2}\right]^{\mathrm{n}}+C_{2}\left[\frac{3-\sqrt{5}}{2}\right]^{\mathrm{n}} ; \frac{1+\sqrt{5}}{2} k$.
5. (i) 1 ; $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2\end{array}\right]$ (ii) 0 ; No inverse (iii) $8 ; \frac{1}{8}\left[\begin{array}{ccc}-3 & 4 & 1 \\ 4 & -8 & 4 \\ 1 & 4 & -3\end{array}\right]$
6. $\left[\begin{array}{cc}1 & -5 / 11 \\ 1 & 2 / 11\end{array}\right]$
8. (a) (i) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ (ii) $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
(b) (i) $\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{array}\right] \quad$ (ii) $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
9. $\left[\begin{array}{r}-1 / \sqrt{6} \\ 2 / \sqrt{6} \\ -1 / \sqrt{6}\end{array}\right]$
10. (a) $\underline{x}^{\prime}=\left[\begin{array}{l}1 / \sqrt{3}-2 / \sqrt{6} \\ 1 / \sqrt{3}+4 / \sqrt{6} \\ 1 / \sqrt{3}-2 / \sqrt{6}\end{array}\right]$

$$
y^{\prime}=\left[\begin{array}{c}
\sqrt{3}-\sqrt{2}-1 / \sqrt{6} \\
\sqrt{3}+2 / \sqrt{6} \\
\sqrt{3}+\sqrt{2}-1 / \sqrt{6}
\end{array}\right]
$$

