Examples paper 6

(Elementary exercises are marked \dagger, problems of Tripos standard *)
27 NOV 2013

Revision question

Evaluate the following integrals:
(a) $\int x^{-1 / 2} d x$
(b) $\int x^{-1} d x$
(c) $\int \frac{x^{5}}{1+x^{6}} d x$
(c) $\int x^{2} \ln x d x$
(d) $\int \sin ^{4} x \cos x d x$
(e) $\int_{-\pi}^{\pi} \sin x\left(x^{2} \cos x+x^{6}\right) d x$

Eigenvalues and Eigenvectors

1 Find the eigenvalues and eigenvectors of the following symmetric matrices:
(i) $\left[\begin{array}{rr}1 & 2 \\ 2 & -2\end{array}\right]$
(ii) $\left[\begin{array}{ll}3 & 1 \\ 1 & 4\end{array}\right]$
(iii) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
(iv) $\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -4\end{array}\right]$
(v) $\left[\begin{array}{rrr}3 & -4 & 1 \\ -4 & 8 & -4 \\ 1 & -4 & 3\end{array}\right]$

2 If y is the reflection of the vector \underline{x} in the plane through the origin with unit normal \underline{n}, show that

$$
\underline{y}=\underline{x}-(2 \underline{x} \underline{n}) \underline{n},
$$

and hence find the 3×3 matrix R describing the transformation (i.e. find the matrix R such that $y=R \underline{x}$). By a geometric argument, what are the eigenvalues and corresponding eigenvectors of R ?

3 Construct the symmetric matrix \mathbf{A} which has eigenvalues $\lambda_{i}=3,1,1 / 2$ and corresponding eigenvectors $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -2\end{array}\right]$. Find also the symmetric matrix B with the same eigenvectors, but with the corresponding eigenvalues equal to $1 / \lambda_{i}$. Evaluate the matrix $A B$ and comment on your result.
$4 A$ is a real symmetric 2×2 matrix with eigenvalues λ_{1} and λ_{2} and $f(\lambda)=|A-\lambda I|$ is the polynomial whose roots are the eigenvalues. By considering relevant coefficients in the polynomial $f(\lambda)$ prove that
(a) $A_{11}+A_{22}=\lambda_{1}+\lambda_{2}$
(b) $|A|=\lambda_{1} \lambda_{2}$.
$5 \dagger$ Find the eigenvalues and eigenvectors of the 2×2 real, symmetric matrix A where

$$
A=\left[\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right]
$$

Hence find a matrix R which changes the coordinate system so that the new axes are aligned with the eigenvectors of A. Calculate the version of the matrix A in these new coordinates, and verify that it agrees with the form derived in lectures.

6 A 3×3 real, symmetric matrix A has eigenvalues $\lambda_{i}, i=1,2,3$, and corresponding normalised eigenvectors \underline{u}_{i} The eigenvalues are real, distinct, and arranged in the order

$$
\lambda_{1}<\lambda_{2}<\lambda_{3} .
$$

Explain why any vector \underline{x} can be expressed in the form $\underline{x}=\alpha \underline{u}_{1}+\beta \underline{u}_{2}+\gamma \underline{u}_{3}$, and hence show that
(a) $\underline{x}^{t} \underline{x}=\alpha^{2}+\beta^{2}+\gamma^{2}$
(b) $\underline{x}^{t} A \underline{x}=\lambda_{1} \alpha^{2}+\lambda_{2} \beta^{2}+\lambda_{3} \gamma^{2}$.

Use these expressions to show that

$$
\lambda_{1} \leq \frac{\underline{x}^{t} A \underline{x}}{\underline{x}^{t} \underline{x}} \leq \lambda_{3}
$$

for all vectors \underline{x}. When is equality achieved?

7* Using the matrix A of question 6, and again expressing a general vector \underline{x} in terms of the eigenvectors of A, what is $A^{n} \underline{x}$? What happens to $A^{n} \underline{x}$ as n gets large? Using the result of question 3 , derive a similar result for $\left(A^{-1}\right)^{n} \underline{x}$.

With $A=\left[\begin{array}{rrr}3 & -4 & 1 \\ -4 & 8 & -4 \\ 1 & -4 & 3\end{array}\right]$ and $\underline{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$,
use Matlab/Octave to calculate $A \underline{x}, A^{2} \underline{x}, A^{3} \underline{x}$ and $A^{4} \underline{x}$, and hence obtain an approximation for the eigenvalue of A with largest absolute value, and the corresponding eigenvector.
Experiment with higher powers of A, and compare your result with the exact answer, which was calculated in question 1 part (v).

Hints

To enter the matrix A into Matlab/Octave, just type $A=\left[\begin{array}{llllllllll}3 & -4 & 1 ; & -4 & 8 & -4 ; & 1 & -4 & 3\end{array}\right]$, and similarly for x. Matrix/vector arithmetic is then as simple as $A 4 x=A^{\wedge} 4 * x$. To normalize the answer, divide through by norm (A4x). Finally, look at an element-by-element division of $A 4 x$ by $A 3 x$. With higher powers of A you should get better approximations of the eigenvector and eigenvalue.

Suitable past Tripos questions:
2003 Q4, 2004 Q4, 2005 Q5b (long), 2006 Q2 (short), 2007 Q4 (long), 2008 Q5 (long), 2009 Q3c (long)

Answers

1. (i) eigenvalues $2 \&-3$, eigenvectors $[2 / \sqrt{5}, 1 / \sqrt{5}]^{\mathrm{t}} \&[1 / \sqrt{5},-2 / \sqrt{5}]^{\mathrm{t}}$
(ii) eigenvalues $4.618 \& 2.382$, eigenvectors $[0.526,0.851]^{1} \&[0.851,-0.526]^{\mathrm{t}}$
(iii) eigenvalues $2 \& 3$, eigenvectors $[1,0]^{t} \&[0,1]^{t}$
(iv) eigenvalues $-1,1 \&-4$, eigenvectors $[1,0,0]^{t},[0,1,0]^{t} \&[0,0,1]^{t}$
(v) eigenvalues $0,2 \& 12$, eigenvectors $[1 / \sqrt{ } 3,1 / \sqrt{ } 3,1 / \sqrt{3}]^{\mathrm{t}},[1 / \sqrt{ } 2,0,-1 / \sqrt{2}]^{\mathrm{t}}$ \& $[-1 / \sqrt{6}, 2 / \sqrt{6},-1 / \sqrt{6}]^{\mathrm{t}}$
2. $l-2 \underline{n} \underline{n}^{\mathrm{t}}$
3. $A=\frac{1}{12}\left[\begin{array}{rrr}23 & 13 & 2 \\ 13 & 23 & -2 \\ 2 & -2 & 8\end{array}\right] \quad B=\frac{1}{6}\left[\begin{array}{rrr}5 & -3 & -2 \\ -3 & 5 & 2 \\ -2 & 2 & 10\end{array}\right]$

$$
A B=I
$$

5. Eigenvalues 2 and 6 , eigenvectors $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right],\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right], R=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$.
6. Equality when \underline{x} is a multiple of \underline{u}_{1} or \underline{u}_{3}
7. $A \underline{x}, A^{2} \underline{x}, A^{3} \underline{x}, A^{4} \underline{x}=\left[\begin{array}{r}3 \\ -4 \\ 1\end{array}\right],\left[\begin{array}{r}26 \\ -48 \\ 22\end{array}\right],\left[\begin{array}{r}292 \\ -576 \\ 284\end{array}\right],\left[\begin{array}{r}3464 \\ -6912 \\ 3448\end{array}\right]$.

Approximations for eigenvalue 12.00 , eigenvector $[0.4092,-0.8165,0.4073]^{\mathrm{t}}$.

Michaelmas 2013
GNW/MPJ

