Engineering

١

Part IA Paper 4: Mathematics

FIRST YEAR

Examples paper 6

(Elementary exercises are marked [†], problems of Tripos standard ^{*})

ISSUED ON

27 NOV 2013

Revision question

Evaluate the following integrals:

(a)
$$\int x^{-1/2} dx$$
 (b) $\int x^{-1} dx$ (c) $\int \frac{x^5}{1+x^6} dx$
(c) $\int x^2 \ln x dx$ (d) $\int \sin^4 x \cos x dx$ (e) $\int_{-\pi}^{\pi} \sin x \left(x^2 \cos x + x^6\right) dx$

Eigenvalues and Eigenvectors

1 Find the eigenvalues and eigenvectors of the following symmetric matrices:

(i)	$\left[\begin{array}{rrr}1&2\\2&-2\end{array}\right]$	(ii)	$\left[\begin{array}{cc} 3 & 1 \\ 1 & 4 \end{array}\right]$	(iii) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	
(iv)	-1 0	٥٦	(v)	3 -4 1]	
	0 1	0		-4 8 -4	
	00-	-4]	L	1 -4 3	

2 If y is the reflection of the vector \underline{x} in the plane through the origin with unit normal \underline{n} , show that

$$\underline{y} = \underline{x} - (2 \underline{x} \cdot \underline{n}) \underline{n} ,$$

and hence find the 3×3 matrix R describing the transformation (i.e. find the matrix R such that $\underline{y} = R \underline{x}$). By a geometric argument, what are the eigenvalues and corresponding eigenvectors of R?

3 Construct the symmetric matrix A which has eigenvalues $\lambda_i = 3, 1, \frac{1}{2}$ and corresponding

eigenvectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\-2 \end{bmatrix}$. Find also the symmetric matrix *B* with the same

eigenvectors, but with the corresponding eigenvalues equal to $1/\lambda_i$. Evaluate the matrix A B and comment on your result.

4 A is a real symmetric 2×2 matrix with eigenvalues λ_1 and λ_2 and $f(\lambda) = |A - \lambda I|$ is the polynomial whose roots are the eigenvalues. By considering relevant coefficients in the polynomial $f(\lambda)$ prove that

(a)
$$A_{11} + A_{22} = \lambda_1 + \lambda_2$$
 (b) $|A| = \lambda_1 \lambda_2$.

5† Find the eigenvalues and eigenvectors of the 2×2 real, symmetric matrix A where

$$A = \begin{bmatrix} 4 - 2 \\ -2 & 4 \end{bmatrix}$$

Hence find a matrix R which changes the coordinate system so that the new axes are aligned with the eigenvectors of A. Calculate the version of the matrix A in these new coordinates, and verify that it agrees with the form derived in lectures.

6 A 3 × 3 real, symmetric matrix A has eigenvalues λ_i , i = 1, 2, 3, and corresponding normalised eigenvectors \underline{u}_i The eigenvalues are real, distinct, and arranged in the order

$$\lambda_1 < \lambda_2 < \lambda_3 .$$

Explain why any vector \underline{x} can be expressed in the form $\underline{x} = \alpha \underline{u}_1 + \beta \underline{u}_2 + \gamma \underline{u}_3$, and hence show that

(a)
$$\underline{x}^{t} \underline{x} = \alpha^{2} + \beta^{2} + \gamma^{2}$$
 (b) $\underline{x}^{t} A \underline{x} = \lambda_{1} \alpha^{2} + \lambda_{2} \beta^{2} + \lambda_{3} \gamma^{2}$.

Use these expressions to show that

$$\lambda_1 \leq \frac{\underline{x}^t A \underline{x}}{\underline{x}^t \underline{x}} \leq \lambda_3$$

for all vectors \underline{x} . When is equality achieved?

7* Using the matrix A of question 6, and again expressing a general vector \underline{x} in terms of the eigenvectors of A, what is $A^n \underline{x}$? What happens to $A^n \underline{x}$ as n gets large? Using the result of question 3, derive a similar result for $(A^{-1})^n \underline{x}$.

With $A =$	[3-4 1]	and $\underline{x} =$	[1]	,
	-4 8-4		0	
	1-4 3		0	

use Matlab/Octave to calculate $A \underline{x}$, $A^2 \underline{x}$, $A^3 \underline{x}$ and $A^4 \underline{x}$, and hence obtain an approximation for the eigenvalue of A with largest absolute value, and the corresponding eigenvector. Experiment with higher powers of A, and compare your result with the exact answer, which was calculated in question 1 part (v).

Hints

To enter the matrix A into Matlab/Octave, just type A = [3 -4 1; -4 8 -4; 1 -4 3], and similarly for x. Matrix/vector arithmetic is then as simple as $A4x = A^4 * x$. To normalize the answer, divide through by norm(A4x). Finally, look at an element-by-element division of A4x by A3x. With higher powers of A you should get better approximations of the eigenvector and eigenvalue.

Suitable past Tripos questions: 2003 Q4, 2004 Q4, 2005 Q5b (long), 2006 Q2 (short), 2007 Q4 (long), 2008 Q5 (long), 2009 Q3c (long)

Answers

- 1. (i) eigenvalues 2 & -3, eigenvectors $[2/\sqrt{5}, 1/\sqrt{5}]^{t}$ & $[1/\sqrt{5}, -2/\sqrt{5}]^{t}$
 - (ii) eigenvalues 4.618 & 2.382, eigenvectors [0.526, 0.851]^t & [0.851, -0.526]^t
 - (iii) eigenvalues 2 & 3 , eigenvectors $[1,0]^t$ & $[0,1]^t$
 - (iv) eigenvalues -1, 1 & -4, eigenvectors $[1, 0, 0]^t$, $[0, 1, 0]^t \& [0, 0, 1]^t$
 - (v) eigenvalues 0, 2 & 12 , eigenvectors $[1/\sqrt{3}, 1/\sqrt{3}]^{t}, [1/\sqrt{2}, 0, -1/\sqrt{2}]^{t}$ & $[-1/\sqrt{6}, 2/\sqrt{6}, -1/\sqrt{6}]^{t}$
- 2. $I 2 \underline{n} \underline{n}^{t}$

3.
$$A = \frac{1}{12} \begin{bmatrix} 23 & 13 & 2 \\ 13 & 23 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$
 $B = \frac{1}{6} \begin{bmatrix} 5 & -3 & -2 \\ -3 & 5 & 2 \\ -2 & 2 & 10 \end{bmatrix}$ $AB = I$

- 5. Eigenvalues 2 and 6, eigenvectors $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $\begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$, $R = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.
- 6. Equality when \underline{x} is a multiple of \underline{u}_1 or \underline{u}_3
- 7. $A \underline{x}, A^2 \underline{x}, A^3 \underline{x}, A^4 \underline{x} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} 26 \\ -48 \\ 22 \end{bmatrix}, \begin{bmatrix} 292 \\ -576 \\ 284 \end{bmatrix}, \begin{bmatrix} 3464 \\ -6912 \\ 3448 \end{bmatrix}.$

Approximations for eigenvalue 12.00, eigenvector [0.4092, -0.8165, 0.4073]^I.

Michaelmas 2013

GNW/MPJ