15 JAN 2014 Sart 1A Paper 3: Electrical and Information Engineering, EXAMPLES PAPER 4 Linear Circuits & Devices

This examples paper is based on material from lectures 13-18. Where possible, the lectures on which the questions are based are indicated, e.g. [L15]. Questions containing material of tripos standard are marked *.

Small-Signal Models

1. (i) For the FET with the characteristics shown in Fig. 1 below, graphically estimate the values of the small-signal parameters g_m and r_d at the operating point, P.

 V_{DS}

Fig. 1

(ii) The small-signal model of the circuit in Fig. 2(a) is shown in Fig. 2(b). What do R_1 , $R_2 \& R_3$ represent? [L13]

Fig. 2(a)

2. An FET has small-signal parameters gm = 4 mS and $r_d = 10$ k Ω at the following working point:

 $V_{DS} = 8 \text{ V}, I_D = 2.5 \text{ mA}, V_{GS} = 2 \text{ V}.$

Design a common-mode amplifier circuit using this FET, a + 30V power supply (V_{DD}) and a potential divider to generate the gate bias voltage. Then

- (a) Determine the value of the circuit drain resistor and the ratio of potential divider resistances (in the gate bias circuit) that will enable the above operating point to be achieved.
- (b) Draw the small-signal equivalent circuit of your design and use it to calculate the smallsignal voltage gain of the circuit.
- (c) Now assume a further constraint the input resistance of the circuit must be greater than 100 k Ω . Now determine values of the potential divider resistors that satisfy this requirement. [L13]

3. The circuit shown below in Fig. 3 is known as a source-follower (i.e. the output "follows" the input, so the gain ~1). $R_1 = 2 M\Omega$. The FET has small-signal parameters gm = 5 mS, $r_d = 50 k\Omega$. The operating point for the transistor is $V_{DS} = 7 V$, $I_D = 2.6 mA$, $V_{GS} = -3 V$.

(a) Calculate values for R2 & R3 that will enable the desired operating point to be achieved.

- (b) Draw the small-signal equivalent circuit.
- (c) Using the small-signal equivalent circuit, calculate the circuit's input resistance, output resistance and voltage gain.

Coupling capacitors, generic amplifiers

4. A common-source amplifier is shown below in Fig. 4. The small signal-parameters for the FET are $g_m = 4 \text{ mS}, r_d = 10 \text{ k}\Omega.$

What value of output coupling capacitor, C, is needed between the drain and the load, assuming that the load resistance is 500 Ω , and the voltage across the load can drop to 70% of its maximum value at 20 Hz?

* 5. In the amplifier circuit of Fig. 5, the field-effect transistor has mutual conductance $g_m = 4$ mS and an effectively infinite drain resistance, r_d .

Fig. 5

Derive a general expression for the signal gain v_0/v_1 as a function of g_m , R_1 , R_2 , C & angular frequency, ω .

Calculate the gain at frequencies of 1.59 Hz, 159 Hz and 15.9 kHz. [L16]

6.

The circuit of an amplifier and its load is shown in Fig. 6

(a) With the switch between the load and the amplifier in the DIRECT position, as shown, and at a frequency when the effect of C_4 can be ignored, what is the value of the signal voltage gain, v_4/v_2 ? This is commonly called the mid-band gain.

(b) When the effect of C₄ cannot be ignored, show that the gain v_4/v_2 drops to 70% (or $1/\sqrt{2}$) of its mid-band value at frequency f_4 Hz given by:

$$\frac{1}{2\pi f_4 C_4} = \frac{R_3 \cdot R_4}{(R_3 + R_4)}$$

For the circuit values given, find f_4 .

(c) Consider the switch between the load and the amplifier to be in the A.C. position and the signal frequency now being very much lower than f_4 so that the effect of C₄ can be ignored. Show that the gain v_4/v_2 drops to 70% (or $1/\sqrt{2}$) of its mid-band value at a frequency f_3 given by:

$$\frac{1}{2\pi f_3 C_3} = R_3 + R_4$$

For the circuit values given, find f_3 .

(d) Explain why f_3 and f_4 are also known as the "turnover", half-power or -3dB frequencies.

If $R_2 = 1 \ M\Omega$ and R_4 is the only output load, find the mid-band power gain of the amplifier numerically and in decibels.

If the amplifier is preceded by another stage whose gain is +40 dB and a "volume" control between the two amplifiers is set to -4 dB (i.e. a loss), what is the overall gain in decibels? [L15]

7. (a) In the circuit of Fig 7(a), if the input voltage, v_{in} is 3 mV rms from a microphone, $R_1 = 3 k\Omega$, $R_2 = 500 k\Omega$, and the Op-Amp is ideal, calculate the output voltage, v_{out} .

(b) In the circuit of Fig 7(b), if the input voltage, v_{in} is 5 mV rms from a microphone, $R_3 = 99$ k Ω , $R_4 = 1$ k Ω , and the Op-Amp is ideal, calculate the output voltage, v_{out} .

(c) Now assume that the Op-Amps have finite values of gain, A and input resistance, R_i , but have negligible output resistance. Derive algebraic expressions for the gain v_{out}/v_{in} of each circuit. Show that these expressions reduce to those given in the lectures for ideal op-amps.

Fig 7(a)

7(b)

8. Figure 8 shows the circuit of a summing amplifier. Assuming that the op-amp is ideal, show that v_{out} is given by:

- (a) The summing circuit is required to produce an output $-(200v_1 + 40v_2)$. If $R_f = 100 \text{ k}\Omega$, what values are required for $R_1 \& R_2$, given that the signal sources providing $v_1 \& v_2$ each have an internal output impedance of 200 Ω ?
- (b) The op-amp is powered from a voltage supply that delivers +V and -V, relative to earth. If v_1 and v_2 have amplitudes 10 mV and 50 mV, respectively, determine the minimum power supply voltages required for the circuit to work correctly.

9. The amplifier circuit shown in Fig. 9 is called a transimpedance amplifier. It is commonly used to amplify very small ac currents and convert them to a voltage. The op-amp used has a gain, A of 10^4 , but is otherwise ideal.

- (a) Derive an expression for the output voltage per unit input current (this is known as the transimpedance).
- (b) Estimate the half-power bandwidth of the circuit for C = 60 pF and R = $10^{10} \Omega$.
- (c) Unfortunately, such a high value of R will have some stray capacitance, C_{S_s} associated with it, which is in parallel with R. If $C_s = 2$ pF, estimate the upper -3dB point for the circuit.

Fig. 9

Answers:

- 1. (i) 4.6 mS, 40k Ω , (ii) $R_1 = R_G$, R_2 & $R_3 = R_D$ & r_d .
- 2. (a) 8.8 k Ω , 14, (b) -18.7, (c) 1.5 M Ω from the gate to the power supply line, 107 k Ω from the gate to ground.
- 3. (a) $R_3 = 5 k\Omega$, $R_1 = R_2 = 2 M\Omega$, (c) gain = 0.958, $R_{in} = 1 M\Omega$, $R_{out} = 192\Omega$.
- 4. 2.08 μF.

.

- 5. $-g_m R_1 (1 + j\omega C_2 R_2)/(1 + g_m R_2 + j\omega C_2 R_2), -9, -53.5, -80$
- 6. (a) 90, (b) 1 MHz, (c) 1 Hz, (d) 59.5 dB, 95.5 dB
- 7. (a) 500 mV rms, (b) 500 mV rms, (c) $-AR_2R_i/(AR_1R_i + R_2R_i + R_1R_i + R_1R_2)$, $-> -R_2/R_1$ when A is large; $A(R_iR_3 + R_iR_4)/(AR_4R_i + R_3R_i + R_4R_i + R_4R_3) -> AR_iR_4/(R_3 + R_4)$ when A is large.
- 8. (a) $R_1 = 300 \Omega$, $R_2 = 2300 \Omega$. (b) Power supplies should be at least + 4V and -4V.
- 9. (a) $-AR/((A + 1) + j\omega CR)$, (b) 2.7 kHz, (c) 8 Hz

Dr C. Durkan Lent 2014