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Part IB Paper 6: Information Engineering
SIGNAL AND DATA ANALYSIS

Examples paper 6/6

(Straightforward questions are marked 1, problems of Tripos standard but not necessarily of Tripos
length * ). Note, two forms of the Fourier Series Data Sheet are given at the end of the paper.

Fourier Series and Systems

1. Determine the complex Fourier series expansion of each of the periodic signals shown. Do
this either from first principles or, where appropriate, using time-shift, differentiation etc applied to
simpler functions, series taken from the Data Sheet etc..  (Note that the period in case (b) isnot T.. )
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2.t Find the Fourier series representing an impulse train of period T, i.e.

x(f) = .. + @+2T) + 85@+T) + 8@1) + 6(¢-T) + d(t-2T) + ..
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3. The periodic signal shown is defined by

® 5t

Fe~T
x(®) = E exp(-5¢T) E

] 1
in the interval 0 <7 < 7. Obtain the amplitudes ' I

1
of the d.c. component and the fundamental in this ' \ ¢
waveform in terms of E. l T T

In order to reduce the amplitude of the
fundamental, the signal is input to the low-pass R
) — "
filter shown. Show that the d.c. component is
unaffected by the filter and that the amplitude of v cl v
the fundamental at output to the filter is 0.0389E. z T ’
I'=CR
Fourier Transforms

4. A function f{z) has Fourier transform F(w). Show from the definition of the Fourier

transform that;:

a)t  f{t-tp ) has Fourier transform F( @) exp(-j @ t)

dF (w)

b
) do

has inverse Fourier transform —jz f{¥)

9 [ d=--[") F@) [do

d) The inverse Fourier transform of f(w) is %F -
V2



5.*  Determine the Fourier transform of the half cosine pulse given by

i

x(?) cos ( 2nt/T) -7/4 <t <T/4

0 otherwise

I

Using the linearity and shift properties determine the transforms of the following signals.
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Triple half-cosine pulse Sine pulse
6.*  Show that the Fourier transform of the SO
rectangular pulse, f{7), is given by 4
_ sin (wT/2)
Fow) = VT T2
t
L
; 5
g0
Using this result and the relevant Fourier 'shift v
theorems' obtain the Fourier transform of the
signal g(?).
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Energy and Parseval's Theorem

7. Let x(¥) and y(¢) be two periodic signals with period 7, and let x,, and y, denote the complex

Fourier series coefficients of these two signals. Show that

e o]
1 (T N B *
—J, x®y*@®dt = D x,y,
n=-co
[Hint: make sure you use the Fourier series coefficients and not the Fourier transform.]
8* A system has a frequency response given by

1
Hw = T—/=
(@) 1+joT
If the input to such a system has a Fourier Transform given by
X@ =15
w)y = T T
1 +] T 1

what is the ratio of T /T such that 75% of the energy of the input signal will appear at the system

output ?

9. A waveform has a Fourier Transform F(y) IE()
whose magnitude is shown in the figure and
where f is in Hz.

a) Find the energy of the waveform.
b) Calculate the frequency f; such that one half -1 1

of the normalised energy is in the frequency range

~f1 to f].

10.*  Consider the signal consisting of two finite duration frequency(lcomponents, given by

]

1 1
cos pt + cos gt, =T <t <35T

x(5)

= 0, otherwise

Obtain the spectrum of this signal and sketch it for the cases where p>>¢g andp ~gq.
What happens to the resolvability of these two frequency components as 7' increases.



Answers

__l-eT (=1l
La) ¢ = T+j2nn ®) ¢, = jnn
sinnm/2
s

3 3 2 2
and 5 for n=0 d) ¢, = m[cos—g—n-l] and 3 forn=0

¢) ¢, =

1
2. ¢, = 7 foralln

3. Amp of dc = 0.199E, Amp of fundamental =0.247E.

sin (w— ax)T/4 sin (w+ wy)T/4 2ax, cos wT/4
5. a) + = 5 ) with x =27/T.
w— ax @+ ax wy — @

2ax
b) 53 (2cos &T/4 +cos 3wT/4).
wy— @
-2
) % sin w12
g — &

in wl/2 1 sin oT/4
o2 2 oT/4

6. VT (s cos 3«;7?4).

8. Ratio=3.
9. Energy =2/3, f, = 0.21.

. sin((w-p)T/2) + sin({(w+p)T/2) + sin({(w—q)T/2) + sin((w+q)T/2)

w-p w+p w—q w+q

Resolvability increases.
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Fourier Series Data Sheet

o T
If £(t) is periodicoverOto T, then £(f) = Z (v &%t where Cp = %f f(t) e inoot g

Ntmeo t=0

The (scientific) fundamental frequency is Wy = ?F_ZE and the (scientific) n'th harmonic is nw, .

| Half-wave rectified cosine wave:
1 ' i
" .
1 1. 1 1 ejnoot
! = — = ajoQt — e-Jopt -
! () ﬂ:+4‘=.51 + ¢ + E (il)nz__1
| t n=-os
! - neven
o T T= n signs alternate, + forn =2
7 o
1 p-phase rectified cosine wave (p=2):
/Y'WY\ oo
! ! . ! f(t) nsmp 1+?t 2(&1) o1
] I | | ’ ey
,l } E ' t_ n multiple
+ y of p
- T 0 T | signs alternate, + forn=p
2 " Zp
1 . Square wave:
’ o
¢ £© = E 2 ginook
- Jrn
0 2 0dd
-1 --] ——

Triangular wave:

0 \/T t f(t) = i—EiZ(t 1) )
e
r odd

signs alternate, +forn =1

A 1L . A /| Saw-tooth wave:
. t
oo .
T V V ¢ =L _qyn+ &t
V fO== 3 ()=
n=—co,

n¥0
a
1 - . Pulse wave:
] i Z‘” sin®Z2
I I . 2 T .jneot
: : t f(t) = T 1+ nma eJ2®o
\ _ n=—oo T
. 0 ¥ ¥ n#0
T 2T




FOURIER SERIES ANALYSIS OF PERIODIC WAVEFORMS

If g(t) is periodic over —T/2 to T'/2 then:

=]
g(t) = %‘- + Z [an cos(nwpt) + b, sin(nwot)]
nal
h 2 [ dt and bo=2 [ gtysi
where a, = —f[.m g(t) cos(nwot)dt an n = f—r—/_wzg(t)sm(muot)dt
or: - /2 o
— nwot - -—jnwat = Ay — Jé‘ﬂ
g{t) = ngm cne’ where ¢, = T/ g(t)e dt 5

Where wg = 27/T = 2x fo; fo = 1/T is the fundamental frequency.

Half-wave rectified cosine wave:

1— , .
5 /T\ -, g(t) = 'j: + 1 cos(wot) + = Z;l( —1)+! Cojiz?'-u-d(])‘t)
T

T/4
1 p-phase rectified cosine wave (p > 2):

' ' g@t) = 2 sm —|1+2 Z( —1)yt cos(pnuiot)
: 1 o p n=1 p2n2 -1
r0 7T t
» 2 Square wave:

1 4 & sin(2n - 1wot

~ gy = 2y Sn2n = Lot

10 [z 1 | =

Triangular wave:

in(2n — l)wel

AR (0= 55 (-1 (en =1y

- n=l

Sawtooth wave:

”7" /1 . g(t)-— Z( 1)n+lsm(nwot)
/I'O L—r [~ ! Tnst

tq "Pulse wave:

. el

v
| ! i _ sin(nwty/T) |
i i m 4 g(t) == {1-}»22 o ;T) cos(nwot)]

2T
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