Lecturer
Dr G Pullan [1]

Timing and Structure
Weeks 1-3 and 6-8 Michaelmas term, 2 lectures/week; weeks 4-5 Michaelmas term, 1 lecture/week. 14 lectures

Aims
The aims of the course are to:

• Provide the necessary background mathematics to ensure that students are confident in handling partial differential equations in vector form while maintaining a tangible physical appreciation of the manipulations involved.

Objectives
As specific objectives, by the end of the course students should be able to:

• Differentiate and integrate scalar functions of two or more variables including transformations to other coordinate systems.
• Manipulate vector differential equations including the gradient, divergence and curl operators while retaining a physical appreciation of the mathematical operations involved.
• Perform line, surface and volume integrals and understand their various physical interpretations.
• Set up conservation statements in both differential and integral form and be able to transform from one to the other using Gauss's theorem.
• Appreciate the physical significance of curl and its relationship to circulation via Stokes's theorem in simple examples.
• Solve common PDE's (particularly the Laplace, Poisson, heat conduction and wave equations) with simple boundary conditions by the method of separation of variables.

Content
The course provides an elementary introduction to vector calculus and aims to familiarise the student with the basic ideas of the differential calculus (the vector gradient, divergence and curl) and the integral calculus (line, surface and volume integrals and the theorems of Gauss and Stokes). The physical interpretation of the mathematical ideas will be stressed throughout via applications which centre on the derivation and manipulation of the common partial differential equations of engineering. The analytical solution of simple partial differential equations by the method of separation of variables will also be discussed.

A knowledge of the following Part IA lecture material on functions of more than one variable will be assumed: representation of curves and surfaces (including parametric representation); partial differentiation; total and perfect differentials; Taylor series; maxima and minima.

The course will then consist of lectures on the following topics:
Vector functions and fields; field lines.
Vector differentiation; differentiation formulae.

The vector gradient and its physical interpretation;

Cylindrical and spherical polar co-ordinate systems.

The divergence and its physical interpretation; solenoidal fields; conservation statements;

Surface integrals; volume integrals; Gauss's divergence theorem; integral-differential transformations. Stokes's theorem.

The curl and its physical interpretation; irrotational fields; scalar potential; line integrals; conservative fields.

Types of PDE and boundary conditions; solution by separation of variables; examples of some common PDE's (Laplace, Poisson, heat conduction, wave equation

Booklists

Please see the Booklist for Part IB Courses [2] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [3].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [4] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [5] which sets out the standard for degree accreditation.

The Output Standards Matrices [6] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 17/05/2018 15:34


Links
[1] mailto:gp10006