Engineering Tripos Part IIA, 3C6: Vibration, 2017-18

Module Leader

Prof D Cebon [1]

Lecturers

Prof D Cebon, Dr T Butlin [2]

Lab Leader

Dr T Butlin [3]

Timing and Structure

Lent term. Vibration of Continuous Systems: 2 lectures/week, weeks 1-4 Lent term (Dr T Butlin), Vibration of Lumped Systems: Rayleigh's method, 2 lectures/week, weeks 5-8 Lent term (Prof D Cebon). 16 lectures.

Prerequisites

3C5 useful (there is one particular result from the Lagrange section of 3C5 which will be quoted without proof)

Aims

The aims of the course are to:

- Introduce the central ideas and tools for the analysis of small (linear) vibration in mechanical systems.
- Introduce simple continuous systems which may be combined as components of larger systems.
- Introduce the general approach to lumped systems via mass and stiffness matrices, and the resulting properties of vibration modes and their frequencies.

Objectives

As specific objectives, by the end of the course students should be able to:

- Derive the partial differential equations governing the forced or free motion of uniform one-dimensional systems.
- Use these equations and appropriate boundary conditions to obtain vibration modes and natural frequencies.
- Be familiar with musical intervals and how these are useful in vibration diagnostics.
- Analyse continuous systems using modal methods.
- Compute impulse and harmonic response by modal and direct methods.
- Calculate the response of a coupled system from a knowledge of the responses of the separate subsystems.
- Apply Rayleigh's method to continuous systems.
- Take advantage of the link between Lagrange's equations and small vibration.
- Explain the concept of a vibration mode, and be able to find the modes and their natural frequencies by an eigenvector/eigenvalue calculation.
Understand orthogonality of modes, modal damping, modal density and modal overlap factor.
Express the frequency response functions or the impulse response functions of a system in terms of the normal modes, and be familiar with the concepts of resonances and antiresonances.
Recognise and apply the reciprocal theorem for responses.
Use the stationary property of normal mode frequencies to estimate frequencies given assumed mode shapes, using minimisation with respect to any free parameters.

Content

This course aims to present a systematic approach to the study of small vibration of engineering components and structures. The course picks up where Part IA Linear Systems and Vibration left off. Concepts which were barely discussed (e.g. reciprocity and the orthogonality of vibration modes) are important for building up qualitative insights into vibration behaviour. Alongside the mathematical tools for quantitative analysis the course offers vital ingredients for an engineer's education.

Vibration of Continuous Systems (8L)

- Vibration of strings; axial and transverse vibration of beams, torsional vibration of circular shafts;
- Modal analysis of simple systems;
- Response to impulse and harmonic excitation;
- Coupling of systems;
- Rayleigh's method for continuous systems.

Vibration of Lumped Systems (8L)

- Application of Lagrange's equations to small vibrations; undamped vibration of systems with N degrees of freedom;
- Matrix methods and modal analysis;
- Response functions in frequency and time domains; properties of frequency-response functions; reciprocal theorems;
- Modal damping and modal overlap;
- Rayleigh's method for discrete systems.

Coursework

A data-logging and FFT analysis system is used to measure the frequency response of a vibrating system by three different methods, to compare their merits and disadvantages.

[Coursework]

Learning objectives:

- 
- 
- 

Practical information:

- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).

Full Technical Report:

Students [will/won't] have the option to submit a Full Technical Report.
Booklists

Please see the Booklist for Part IIA Courses [4] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [5].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [6] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [7] which sets out the standard for degree accreditation.

The Output Standards Matrices [8] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 03/08/2017 15:27

Source URL (modified on 03-08-17): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iiia-3c6-vibration-2017-18

Links
[1] mailto:dc29@cam.ac.uk
[2] mailto:dc@eng.cam.ac.uk, tb267@cam.ac.uk
[3] mailto:tb267@cam.ac.uk