Engineering Tripos Part IIA, 3F4: Data Transmission, 2017-18

Leader

Lecturers
Dr R Venkataramanan, Prof. Ioannis Kontoyiannis

Lab Leader
Dr J Sayir

Timing and Structure
Lent term. 16 lectures

Prerequisites
Knowledge of 3F1 assumed.

Aims
The aims of the course are to:

- Cover a range of topics which are important in modern communication systems.
- Extend the basic material covered in the Engineering Part IB Communications course to deal with data transmission over baseband (low frequency) channels as well bandpass (higher frequency) channels.
- Analyse the effects of noise in some detail.
- Understand the technique of convolutional coding to protect information transmitted over noisy channels.
- To understand basic congestion control protocols (TCP/IP), and routing algorithms used in the Internet.

Objectives
As specific objectives, by the end of the course students should be able to:

- Understand the different components of a communication network, in particular the role of the physical layer versus the network layer.
- Be able to represent waveforms as vectors in a signal space.
- Appreciate that pulses may be shaped to control the bandwidth of a signal and reduce inter-symbol interference, and be aware of the limits on transmission rate if ISI is to be avoided.
- Be able to describe and analyse demodulation of digital bandpass modulated signals in noise.
- Calculate the probability of error of various modulation schemes as a function of the signal-to-noise-ratio.
- Appreciate how equalisation can correct for undesirable channel characteristics and be able to design simple equalisers.
- Understand the need for coding, i.e., adding redundancy to control the effects of transmission errors.
- Understand the principles of convolutional coding, and be able to design a Viterbi decoder for convolutional codes.
- Understand the operation of congestion control protocols (TCP/IP) and routing algorithms used in the Internet.
Content

Fundamentals of Modulation and Demodulation (7L)

- Introduction: The overall communication network and the roles of the physical layer and the network layer
- Signal Space: representing waveforms as vectors in a vector space. Express common modulation schemes such as PAM, QAM using signal space terminology
- Baseband modulation: Desirable properties of the pulse for PAM; Nyquist criterion for no inter-symbol interference; Eye-diagrams
- Passband modulation: Converting a baseband waveform to passband
- Modelling the noise as a Gaussian random process. Additive White Gaussian Noise (AWGN).
- Optimal demodulation and detection at the receiver in the presence of AWGN: Matched filter demodulator, detection as a multiple-hypothesis testing problem, optimality of the Maximum-a-posteriori (MAP) rule.
- Performance analysis of some important modulation schemes (PAM, QAM, Orthogonal signaling etc.); Power efficiency and Bandwidth efficiency of various schemes.

Advanced Topics in PHY-layer (3L)

- Brief discussion of issues that need to be addressed in practical implementation: carrier and phase synchronization between Tx and Rx, timing recovery, dealing with inter-symbol interference (ISI)
- Equalization techniques to deal with inter-symbol interference: ZF and MMSE equalizers
- Orthogonal Frequency Division Multiplexing (OFDM)

Channel Coding (3L)

- Introduction to error correction and linear codes
- Convolutional codes: State Diagram and Trellis representations, Viterbi decoding algorithm
- Distance properties of convolutional codes using the transfer function derived from state diagram; free-distance of convolutional codes.

Network Algorithms (3L)

- Congestion control in the Internet: window-based congestion control: TCP-Reno; slow-start, congestion avoidance
- Routing algorithms in the Internet: Dijkstra’s algorithm, Bellman-Ford and the similarities to the Viterbi algorithm

Further notes

The syllabus for this module has been revised for 2017-18, and therefore the lecture notes, examples papers etc. will be different from previous years. A list of relevant past Tripos questions will be provided towards the end of the module.

Coursework

Digital transmission systems

Learning objectives:

- To investigate, using a hardware simulation of baseband transmission channels, the phenomenon of inter-symbol interference, and to measure bit error rate (BER) due to noise
- To use the eye diagram as a diagnostic tool, and to understand its limitations.
- To compare the measured dependence of BER on signal-to-noise Ratio (SNR) with theoretical predictions, and explain the differences by considering how the assumptions made in the theoretical analysis compare with the real situation.
Practical information:

- Sessions will take place in EIETL, during week(s) [xxx].
- This activity involves preliminary work-- reading the lab handout ([estimated duration: 1 hour]).

Full Technical Report:

Students will have the option to submit a Full Technical Report.

Booklists

For Physical-layer communications:


For network algorithms:


Examination Guidelines

Please refer to Form & conduct of the examinations [2].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [3] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [4] which sets out the standard for degree accreditation.

The Output Standards Matrices [5] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 04/10/2017 18:22

Source URL (modified on 04-10-17): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iiia-3f4-data-transmission-2017-18
Links
[1] mailto:js851