The aims of the course are to:

- Provide a thorough introduction into the topic of statistical inference including maximum-likelihood and Bayesian approaches
- Introduce inference algorithms for regression, classification, clustering and sequence modelling
- Introduce basic concepts in optimisation, dynamic programming and Monte Carlo sampling

Objectives

As specific objectives, by the end of the course students should be able to:

- Understand the use of maximum-likelihood and Bayesian inference and the strengths and weaknesses of both approaches.
- Implement methods to solve simple regression, classification, dimensionality reduction, clustering and sequence modelling problems.
- Implement simple optimisation methods (gradient and coordinate descent, stochastic gradient descent) and dynamic programming (Kalman filter or forward algorithm).

Content

Introduction to inference (2L)

- Revision of maximum likelihood
- Revision of Bayesian estimation
- Outline of the course
Regression (3L)
- What are regression problems
- Revision of properties of Gaussian probability density
- Maximum likelihood and Bayesian fitting of Gaussians
- Linear regression and non-linear regression

Classification (2L)
- Classification problems
- Logistic regression probabilistic model
- Training logistic regression using optimisation
- Stochastic optimisation methods
- Non-linear feature expansions for logistic regression

Dimensionality Reduction (2L)
- What is dimensionality reduction
- Principal component analysis as minimising reconstruction cost
- Principal component analysis as inference

Clustering (3L)
- What is clustering
- The k-means algorithm
- Gaussian Mixture Models
- The Expectation Maximisation (EM) Algorithm

Sequence models (3L)
- Sequence modelling problems
- Markov Models and Hidden Markov models
- Inference in Hidden Markov Models using dynamic programming

Very Basic Monte Carlo (introduced through the lectures above)
- Simple Monte Carlo

Further notes
Lecture allocations above are approximate.

Coursework
Title: Logistic Regression for Binary Classification

To implement an algorithm for performing classification, called logistic regression, using gradient descent optimisation.

Learning objectives:
- understand the logistic regression model through visualising predictions
- how to apply maximum likelihood and MAP fitting using optimisation
- how to implement gradient ascent
- understand how feature expansions can turn linear methods into non-linear methods

Practical information:
- Sessions will take place in the DPO, during week(s) [TBD].
- This activity involves a small amount of preliminary work [estimated duration 1hr].
Students will have the option to submit a Full Technical Report.

Booklists

There is no required textbook. However, the material covered is treated excellent recent text books:

David Barber *Bayesian Reasoning and Machine Learning* [3], Cambridge University Press (2012), available freely on the web.

Christopher M. Bishop *Pattern Recognition and Machine Learning* [4], Springer (2006).

Examination Guidelines

Please refer to [Form & conduct of the examinations](http://teaching.eng.cam.ac.uk/content/form-conduct-examinations) [6].

Last modified: 21/05/2021 13:42

Source URL (modified on 21-05-21): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iiia-3f8-inference-2021-22

Links

[1] mailto:ret26@cam.ac.uk