Module Leader

Prof S Hochgreb

Lecturers

Dr N Swaminathan and Prof S Hochgreb

Lab Leader

Dr N Swaminathan

Timing and Structure

Lent term. 16 lectures, including 2 examples classes. Assessment: 100% exam

Prerequisites

3A5, 3A6 useful

Aims

The aims of the course are to:

- introduce students to fundamental combustion concepts, and their influence on internal combustion engine performance and emissions.

Objectives

As specific objectives, by the end of the course students should be able to:

- Understand fundamental concepts in combustion
- Understand combustion issues particularly relevant to gas turbines
- Understand the performance/efficiency characteristics of IC engines
- Understand how "engine out" and "tailpipe" emissions may be controlled in IC engines

Syllabus

Chemical thermodynamics and equilibrium (1L)

- Mass, energy and atomic species conservation
- Multispecies equilibrium and calculation method

Chemical kinetics (1L)

- Principles of chemical kinetics: law of mass action and activation energy
- Hydrocarbon reaction chains
- Pollutant formation
- Multistep reactions and explosions
- Steady state and partial equilibrium approximations
- Characteristic time and space scales

Applications of chemical kinetics: limit reactors (1L)

- Common approximations in combustion analysis:
 - Static reactor
 - Perfectly stirred reactor
 - Plug flow reactor
- Thermal explosions
- Autoignition

Laminar premixed flames (1L)

- Laminar premixed flames: concepts and measurements
- Conservation equations for combustion in one and multiple dimensions
- Characteristic time and space scales, Zeldovich number
- One-dimensional conservation equation and simplified solutions
- Effects of mixture composition, stretch and curvature

Laminar non-premixed flames (1L)

- Laminar diffusion flames: concept and measurement methods
- Characteristic time and space scales
- Conserved scalars and mixture fraction
- One-dimensional conservation equations: co-flow and opposed flow

Kinetics of pollution formation (NO\textsubscript{x},CO, particles) (1L)

- Zel'dovich and extended NO\textsubscript{x} formation chemistry
- Time scales for CO and HC chemistry
- Particle formation and oxidation mechanisms

Flames and Turbulence (1L)

- Characteristic time and space scales
- Regimes of turbulent combustion
- Measurement methods and results
- Approaches to modeling turbulent combustion

Gas turbine combustion - performance and emissions (1L)

- Gas turbine combustion principles
- Emissions and stability in industrial gas turbines and aeroengines

SI engines - performance and limits to performance (1L)

- Improving performance: scavenging efficiency, flow exchange processes, direct injection
- Emission control; catalysts and cycle control.

CI engines - performance and limits to performance (1L)

- Basic engine cycle, mean effective pressure and efficiency
- Limits to efficiency and power: autoignition, rate of combustion, heat losses.

CI engines - enhancing performance and emissions (1L)
Multiple injection in CI engines
Principles and perormance of particle trapping and oxidation systems

Turbocharging (1L)
Principles of turbocharging and relevant physics
Turbocharger matching

Future development in combustion engines (1L)

Booklists
Please see the Booklist for Group A Courses [2] for references for this module.

Assessment
Please refer to Form & conduct of the examinations [3].

UK-SPEC
The UK Standard for Professional Engineering Competence (UK-SPEC) [4] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the ‘Accreditation of Higher Education Programmes’ (AHEP) document [5] which sets out the standard for degree accreditation.

The Output Standards Matrices [6] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 05/09/2016 07:51

Source URL (modified on 05-09-16): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4a13-combustion-ic-engines-2016-17

Links
[1] mailto:sh372@cam.ac.uk