Module Leader

Dr AE Markaki [1]

Lecturer

Dr AE Markaki [1]

Lecturer

Prof NA Fleck [2]

Timing and Structure

Michaelmas term. 13 lectures + 1 examples class + 10 hours coursework. Assessment: 75% exam / 25% coursework

Aims

The aims of the course are to:

- develop a systematic approach to design with composites based on mechanical properties and to understand the practical considerations associated with design, manufacture and service requirements.

Objectives

As specific objectives, by the end of the course students should be able to:

- be familiar with the range of composite systems in use.
- derive and use formulae to bound composite material properties.
- perform simple laminate analysis by hand, and more complex analysis with the help of appropriate software.
- be familiar with the use of carpet plots to choose laminates based on stiffness.
- understand the detailed mechanisms of lamina and laminate failure.
- use strength models of failure for lamina and laminates.
- describe design processes commonly used for composite structures.
- be familiar with the manufacturing routes for composites.
- use selection charts to select an appropriate manufacturing route.
- understand the practical requirements associated with joining, manufacture and service use.

Content

Introduction and processing (1L, Dr AE Markaki)

- Introduction
- Fabrication technology

Elastic deformation of laminates (5L, Dr AE Markaki)
- Elastic deformation of composites (stiffness bounds) and material property charts.
- On and off-axis elastic constants of laminates.
- Elastic deformation of laminates.

Designing against failure (4L, Prof. NA Fleck)

- Underlying mechanisms of yield and failure for laminate. Strength of a single ply.
- Testing methods.

Practical Laminate Design (3L, Prof. NA Fleck)

- Composite Compressive Strength Modeller software.

Further notes

Examples papers

Examples Paper 1: Elastic deformation

Examples Paper 2: Strength

Examples Paper 3: Practical considerations

Coursework

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Study: Establish design criteria for a simple structure (10 hours)</td>
<td>Individual Report</td>
<td>Coursework handed in by week 1 (Lent)</td>
</tr>
<tr>
<td>Learning objective:</td>
<td>anonymously marked</td>
<td>[15/60]</td>
</tr>
<tr>
<td>- Apply design methods to select a laminate using a specialist computer package (Composite Compressive Strength Modeller).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Consider practical aspects to outline a detailed design.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booklists

Please see the [Booklist for Group C Courses](#) [3] for references for this module

Examination Guidelines

Please refer to [Form & conduct of the examinations](#) [4].

UK-SPEC

The [UK Standard for Professional Engineering Competence (UK-SPEC)](#) [5] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has
been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [6] which sets out the standard for degree accreditation.

The Output Standards Matrices [7] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 01/09/2017 10:31

Source URL (modified on 01-09-17): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4c2-designing-composites-2017-18

Links
[1] mailto:am253@cam.ac.uk
[2] mailto:naf1@cam.ac.uk