Engineering Tripos Part IIB, 4C6: Advanced Linear Vibrations, 2018-19

Module Leader
Dr HEM Hunt [1]

Lecturers
Prof RS Langley [2]

Lecturers
Dr HEM Hunt [1]

Timing and Structure
Michaelmas term. 13 lectures + 2 examples classes + coursework. Assessment: 75% exam/25% coursework

Prerequisites
3C6 assumed.

Aims
The aims of the course are to:

- teach some essential tools for the understanding, analysis and measurement of vibration in engineering structures.

Objectives
As specific objectives, by the end of the course students should be able to:

- be familiar with the theory and practice of modal analysis and its application to engineering structures.
- apply experimental modal techniques.
- understand the vibration behaviour of idealised system components, and be able to draw implications from this for complex coupled systems.
- appreciate the physical principles of vibration damping.
- analyse simple damped vibrating systems.

Content

Introduction (1L, Prof J Woodhouse)
Outline of course and introduction to the laboratory experiment.

Measurement methods and modal analysis (4L, Dr HEM Hunt)
- Instrumentation for vibration measurement;
• Review of modal analysis; General properties of vibration response;
• Introduction to experimental modal analysis; Modelling the bounce of a hammer.

Analysis of damped systems (4L, Prof J Woodhouse)

• Mechanisms of damping: complex modulus, boundary dissipation, lumped dissipative elements;
• Adding damping to structures, constrained and unconstrained layers;
• Viscous damping, complex modes.

System components and coupling (4L Prof J Woodhouse)

• The Helmholtz resonator and its uses;
• Review of beam, membrane and plate governing equations;
• The circular membrane, Bessel functions, mode shapes and frequencies;
• Coupling of subsystems, constraints and the interlacing theorem.

Coursework

One laboratory experiment on experimental modal analysis, to be performed in pairs, essentially unsupervised. A booking sheet will offer a wide range of possible times at which the experiment may be performed. A normal laboratory write-up is to be prepared, which will be assessed for the coursework credit. Total time commitment will be comparable to a Part IIA experiment plus FTR.

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab experiment: modal analysis</td>
<td>Individual/pair Report Anonymously marked</td>
<td>Before final lab is a feedback lab Wed week 8 [15/15]</td>
</tr>
</tbody>
</table>

Learning objective:

• Revise measurement procedures for transfer functions
• Consolidate and apply material from lectures on modal fitting
• Develop critical skills in interpreting modal data
• Undertake a small-scale industrial-style application of the method, to modify a structure to meet vibration targets

Booklists

Please see the Booklist for Group C Courses [3] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [4].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [5] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.
UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [6] which sets out the standard for degree accreditation.

The Output Standards Matrices [7] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 17/05/2018 14:00

Source URL (modified on 17-05-18): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4c6-advanced-linear-vibrations-2018-19

Links
[1] mailto:hemh1@cam.ac.uk
[2] mailto:rsrl21@cam.ac.uk