Module Leader

Prof. D Cebon [1]

Lecturers

Dr D Cole and Prof. D Cebon [2]

Lab Leader

Dr D Cole [3]

Timing and Structure

Lent term. 13 lectures + 2 examples classes + coursework

Prerequisites

3C5 and 3C6 useful

Aims

The aims of the course are to:

- introduce the forces generated by rolling wheels;
- show how these forces affect the lateral stability and steady cornering behaviour of road and railway vehicles;
- introduce some simple mathematical models and performance criteria for vehicle vibration;
- show how vehicle suspension parameter values can be tuned to optimise vibration performance;
- review vehicle suspension technology;

Objectives

As specific objectives, by the end of the course students should be able to:

- understand steady state creep forces and moments in rolling contact and be able to calculate them using the 'brush' model for a variety of simple cases;
- derive the equations of motion of a simple automobile and understand the basic concepts of automobile handling and lateral stability;
- derive the equations of motion of a two-axle rigid railway bogie and to understand the implications for the steady cornering and stability of railway vehicles;
- derive the equations of motion of simple vehicle models and calculate the vibration responses;
- understand the trade-offs involved in suspension design;
- explain the influence of vehicle and road parameters on vehicle vibration behaviour.

Content
Introduction (1L) Prof. D Cebon and Dr D J Cole

Vehicle dynamics (6L) (Prof. D Cebon)

- Introduction to the creep forces and moments generated by rolling wheels, using the 'brush' model.
- Steady state and transient response of a simple automobile model to steering and side force inputs.
- Introduction to understeer, oversteer, and handling diagrams.
- Stability and cornering of a single railway wheelset and a two-axle railway bogie.

Vehicle vibration (6L) (Dr D J Cole)

- Introduction to random vibration, description of road surface roughness.
- Performance criteria.
- Quarter-car model of vehicle vibration, natural modes, conflict diagrams.
- Pitch-plane model, natural modes, wheelbase filtering, suspension tuning.
- Roll-plane model, lateral tyre behaviour, parallel road profiles.
- Vehicle suspension technology.

Further notes

ASSESSMENT

Lecture Syllabus/Written exam (1.5 hours) - Start of Easter Term/75%
Coursework/Laboratory Report - End of Lent Term/25%

Examples papers

Examples paper 1, vehicle dynamics, issued in lecture 1.
Examples paper 2, vehicle vibration, issued in lecture 8.

Coursework

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Format</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>One laboratory experiment on behaviour of vehicle tyres, to be performed</td>
<td>Individual Report</td>
<td></td>
</tr>
<tr>
<td>in pairs, essentially unsupervised. An online booking sheet will offer</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>a wide range of possible times at which the experiment may be performed.</td>
<td>anonymously marked</td>
<td>[15/60]</td>
</tr>
<tr>
<td>A normal laboratory write-up is to be prepared, which will be assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for the coursework credit. The aim of this experiment is to investigate,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qualitatively and quantitatively, the characteristics of a model tyre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>under a variety of operating conditions. Although the model tyre is not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimensionally similar to a real tyre and is made of solid silicone rubber,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>it displays many of the important characteristics of road and railway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wheels. Learning objectives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Measure the lateral and longitudinal force-slip characteristics of a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>model tyre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Compare measured data with values predicted from a theoretical model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coursework

<table>
<thead>
<tr>
<th>Format</th>
<th>Due & resubmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write a concise report, concentrating on the physics of creep and comparison between experiments and theory</td>
<td></td>
</tr>
</tbody>
</table>

Booklists

Please see the [Booklist for Group C Courses](https://www.vle.cam.ac.uk/mod/book/view.php?id=364101&chapterid=51721) for references for this module.

Examination Guidelines

Please refer to [Form & conduct of the examinations](http://teaching.eng.cam.ac.uk/content/form-conduct-examinations).

UK-SPEC

The [UK Standard for Professional Engineering Competence (UK-SPEC)](http://www.engc.org.uk/ukspec.aspx) describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the [Accreditation of Higher Education Programmes (AHEP) document](http://www.engc.org.uk/standards-guidance/standards/accreditation-of-higher-education-programmes-ahep/) which sets out the standard for degree accreditation.

The [Output Standards Matrices](http://teaching.eng.cam.ac.uk/content/output-standards-matrices) indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 17/05/2018 14:01

Source URL (modified on 17-05-18): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4c8-vehicle-dynamics-2018-19

Links

[1] mailto:dc29@cam.ac.uk
[2] mailto:djc13@cam.ac.uk, dc29@cam.ac.uk
[3] mailto:djc13@cam.ac.uk