Engineering Tripos Part IIB, 4D15: Sustainable Water Engineering, 2020-21

Leader

Prof R Fenner

Lecturer

Prof R Fenner

Lab Leader

Prof R Fenner

Timing and Structure

Lent term. 16 lectures (Eight 2 hour sessions) + coursework. Assessment: 100% coursework.

Aims

The aims of the course are to:

- Recognise the unsustainable feature of current water engineering practice
- Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
- Be aware of recent practices and developments in managing all aspects of the water cycle in both developed and developing countries

Objectives

As specific objectives, by the end of the course students should be able to:

- Understand the limitations of conventional /traditional water supply and wastewater engineering systems in a sustainability context.
- Appreciate the key features of managing the water cycle in a sustainable manner and the need to meet a variety of resilience criteria.
- Recognise and critically assess the problems and solutions associated with managing water engineering projects.
- Be familiar with key aspects of drainage and wastewater management planning including the merits of Natural Flood Management (NFM), Sustainable Drainage Systems (SuDS) and strategies for asset selection based on adaptation planning techniques.
- Be aware of the asset management of water infrastructure and how this is influenced by serviceability and levels of service criteria.
- Recognise global issues in relation to the equitable management, distribution and disposal of water under growing environmental, social and political constraints.
- React to appropriate forms of water supply and sanitation for use in developing countries.

Content

The module will introduce and explore the delivery of water services for water supply, wastewater treatment and
flood control, identifying unsustainable aspects of current practice and reviewing more resilient approaches. The changing paradigms of water management towards fully water sensitive cities will be explained to understand how water fits within a wider urban metabolism. The module will describe management strategies for water in both the urban environment and water in the rural environment, through adopting a flexible adaptation planning approach which avoids technical lock-in. The interdependencies between water and other critical resources will be identified with respect to energy use and recovery of nutrients; the carbon budgets associated with the water sector will be assessed. Current progress towards achieving Sustainable Development Goal 6 (Water) will be discussed and the key constraints of delivering essential water services in the developing world will be highlighted.

Characteristics and components of water systems (overview)

Sustainable water engineering and resilience frameworks

5 themes for sustainable water management (less water consumed; local waste treatment and recycling, stormwater retained, climate resilient, minimum energy footprint). System properties and levels of service considerations. Engineering vs ecological resilience; technical vs management resilience. Avoiding technical lock-in to large infrastructure solutions. The Safe and SuRe approach; anti-fragile planning of water systems; (threat based, mitigation focussed top down water management vs consequence based, coping focussed bottom up management strategies).

Water quality issues and resource recovery

Water quality parameters and regulatory requirements; water quality prediction and control; simple river quality models. Engineered systems for resource recovery and re-use.

Water in the urban system

Flood Risk Management using Adaptation Planning and Adaptive pathways

Concepts of Adaptive Planning (e.g. Thames barrier example). Methodological steps for developing adaptation pathways (London Borough of Sutton Case Study) and appraisal of multiple benefits in Blue Green Cities. Evaluating Blue-Green infrastructure using the CIRIA B£St tool. Preparing Drainage and Wastewater Management Plans.

Water in the rural system

Management of water resources, impacts of climate variability, catchment management. Principles of Natural Flood Management (NFM) and Integrated Catchment management (ICM); international experience and practice. Environmental benefits of land management, Upstream Thinking.

Role of water in water-energy-food/land nexus

Hydro-meteorological risks to critical infrastructure (including energy systems); water and energy interdependencies; groundwater implications of shale gas extraction; strategies for a low carbon water industry, UKWIR framework for carbon accounting; energy from water (micro hydro, thermal heat recovery, anaerobic digestion of biomass etc), water for energy in a low carbon energy future; issues around water and food security.
Water in the developing world

Progress towards Sustainable Development Goal 6; global level of access to water services. Water related diseases. Key features of Water Sanitation and Hygiene (WASH) programmes. Systems thinking in WASH. Small community water supply systems. Low cost wastewater treatment (waste stabilisation ponds). On and off site sanitation including dry sanitation.

Coursework

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework 1: Individual Research Report on a key water related topic</td>
<td>Individual Report anonymously marked</td>
<td>day during term</td>
</tr>
<tr>
<td>An open ended investigation in further detail of one aspect of water</td>
<td></td>
<td>Thu week 4</td>
</tr>
<tr>
<td>engineering practice</td>
<td></td>
<td>[30/60]</td>
</tr>
<tr>
<td>Learning objective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• To develop the ability to seek new information and achieve a balanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>critique of the existing literature through individual research of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relevant details/topics NOT covered in the lecture programme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coursework 2: Resilience assessment of one aspect of water engineering practice</td>
<td>Individual Report anonymously marked</td>
<td>Wed week 9</td>
</tr>
<tr>
<td>A critique of one aspect of current water engineering practice (e.g supply, wastewater disposal, drainage, development) against resilience criteria and propose key areas for change</td>
<td></td>
<td>[30/60]</td>
</tr>
<tr>
<td>Learning objective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• To apply a resilience and sustainable mindset to the delivery of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>services</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booklists

Examination Guidelines

Please refer to Form & conduct of the examinations [2].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [3] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the ‘Accreditation of Higher Education Programmes’ (AHEP) document [4] which sets out the standard for degree accreditation.

The Output Standards Matrices [5] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 02/10/2020 10:27

Source URL (modified on 02-10-20): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4d15-sustainable-water-engineering-2020-21

Links
[1] mailto:raf37@cam.ac.uk