Module Leader

Prof G Madabhushi

Lecturers

Prof G Madabhushi, Dr J Talbot, Mr F A McRobie and Dr M DeJong

Lab Leader

Dr M DeJong

Timing and Structure

Lent term. 14 lectures + coursework. Assessment: 75% exam/25% coursework

Prerequisites

3D7 assumed; 3D2 and 3D4 useful

Aims

The aims of the course are to:

- introduce the behaviour and design of civil engineering structures subjected to time-varying loads.
- introduce earthquake-resistant design, dynamic soil-structure interaction, machine foundation design, blast effects on structures and the fundamentals of wind engineering.

Objectives

As specific objectives, by the end of the course students should be able to:

- identify cases where a static model of a structure is inadequate, and a dynamic model should be used
- produce a simple estimate of the natural frequency and fundamental natural mode of any linear-elastic structure.
- estimate linear-elastic spring parameters for a given foundation.
- compute the natural frequencies and natural modes of structures using the ABAQUS package and include simple soil models to account for soil-structure interaction.
- estimate the response of complex linear-elastic structures to earthquakes using modal superposition and the response spectrum.
- use elastic and inelastic design spectra, and to understand their form.
- perform simple designs for vibration isolation.
- perform simplified soil stiffness calculations accounting for partial liquefaction, and to use this approach in simple liquefaction resistant designs.
- describe some standard methods of seismic-resistant structural design.
- describe blast processes and their effects on structures.
- appreciate the factors involved in the estimation of wind climates and of structural response to wind.
understand the various measures that characterise atmospheric turbulence.
anticipate the circumstances under which aeroelastic phenomena may be problematic.
estimate the dynamic response of a tall structure in a given wind environment

Content

STRUCTURAL DYNAMICS (4L)

Linear Elastic Dynamics

- Introduction to dynamic loads in Civil Engineering; dynamic amplification factors.
- Approximate single-degree-of-freedom analysis of complex structures; sway frames; structures with distributed mass.
- Rayleigh's principle; natural frequency of simple systems using energy methods.
- Linear models to represent structures and their relevance; analysis in frequency domain; mode superposition method.
- Modal analysis of vibration; use of finite element packages.

Non-linear Systems

- Sources of nonlinearity in structures and foundations.
- Analysis in time domain; numerical integration of equations of motion.

APPLICATIONS OF DYNAMICS IN CIVIL ENGINEERING STRUCTURES, PART A: Soil-Structure Interaction (5L)

Machine foundations

- Machine-induced vibrations; active and passive vibration isolation.
- Simple analytical models; design of machine foundations with active isolation, protection of sensitive buildings with passive isolation.

Seismic design

- Earthquake loading on structures; response and design spectra.
- Structures subject top ground motion; deformations due to lateral accelerations; Newmark's sliding block analysis' concept of threshold acceleration.
- Foundations effects; stiffness of soil foundation and soil-structure interaction.
- Pore pressure build-up during earthquakes; partial liquefaction; degradation in soil stiffness; non-linear soil models.
- Liquefaction resistant design, simple examples.

APPLICATIONS OF DYNAMICS IN CIVIL ENGINEERING STRUCTURES, PART B: Seismic resistant design, blast effects and wind engineering(5L)

Seismic resistant design

- Structural design and detailing considerations.

Blast loading

- Physics of blasts; blast effects on structures; blast-resistant design.

Wind loading

- Nature of wind.
- Wind forces on structures.
- Response of structures to buffetting. Fluid-structure interaction (vortex-shedding, galloping and flutter).
 Long-span bridge case study.
Coursework

Seismic analysis of an existing tall building using the ABAQUS finite element package and a study of the effect of foundation softening on the overall structural response. Total time 8 hours.

<table>
<thead>
<tr>
<th>Coursework activity #1 title / Interim</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework 1 brief description</td>
<td>Individual/group</td>
<td>day during term</td>
</tr>
<tr>
<td>Learning objective:</td>
<td>Report / Presentation</td>
<td>Thu week 3</td>
</tr>
<tr>
<td></td>
<td>[non] anonymously marked</td>
<td>[xx/60]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coursework activity #2 title / Final</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework 2 brief description</td>
<td>Individual Report</td>
<td>Wed week 9</td>
</tr>
<tr>
<td>Learning objective:</td>
<td>anonymously marked</td>
<td>[xx/60]</td>
</tr>
</tbody>
</table>

Booklists

Please see the [Booklist for Group D Courses](#) for references for this module.

Examination Guidelines

Please refer to [Form & conduct of the examinations](#).

UK-SPEC

The [UK Standard for Professional Engineering Competence (UK-SPEC)](#) describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the *Accreditation of Higher Education Programmes* (AHEP) document [5] which sets out the standard for degree accreditation.

The [Output Standards Matrices](#) indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 10/10/2017 12:08
Links
[1] mailto:mspg1@cam.ac.uk