Engineering Tripos Part IIB, 4D6: Dynamics in Civil Engineering, 2019-20

Module Leader
Prof FA McRobie [1]

Lecturers
Prof FA McRobie, Dr JP Talbot, Dr SK Haigh [2]

Lab Leader
Prof FA McRobie [1]

Timing and Structure
Lent term. 12 lectures + coursework. Assessment: 75% exam/25% coursework

Prerequisites
3D7, 3D2 and 3D4 useful

Aims
The aims of the course are to:

- introduce the behaviour and design of civil engineering structures subjected to time-varying loads.
- introduce earthquake-resistant design, dynamic soil-structure interaction, machine foundation design, blast effects on structures and the fundamentals of wind engineering.

Objectives
As specific objectives, by the end of the course students should be able to:

- identify cases where a static model of a structure is inadequate, and a dynamic model should be used
- produce a simple estimate of the natural frequency and fundamental natural mode of any linear-elastic structure.
- estimate linear-elastic spring parameters for a given foundation.
- compute the natural frequencies and natural modes of structures using the ABAQUS package and include simple soil models to account for soil-structure interaction.
- estimate the response of complex linear-elastic structures to earthquakes using modal superposition and the response spectrum.
- use elastic and inelastic design spectra, and to understand their form.
- perform simple designs for vibration isolation.
- perform simplified soil stiffness calculations accounting for partial liquefaction, and to use this approach in simple liquefaction resistant designs.
- describe some standard methods of seismic-resistant structural design.
- describe blast processes and their effects on structures.
- appreciate the factors involved in the estimation of wind climates and of structural response to wind.
- understand the various measures that characterise atmospheric turbulence.
- anticipate the circumstances under which aeroelastic phenomena may be problematic.
- estimate the dynamic response of a tall structure in a given wind environment

Content

LECTURE SYLLABUS

Structural dynamics (3L, Dr James Talbot)

Linear Elastic dynamics

á Introduction to dynamic loads in Civil Engineering; dynamic amplification factors.

á Approximate single-degree-of-freedom analysis of complex structures; sway frames; structures with distributed mass.

á Rayleigh’s principle; natural frequency of simple systems using energy methods.

á Linear models to represent structures and their relevance; analysis in frequency domain; mode superposition method.

á Modal analysis of vibration; use of finite element packages.

Application of dynamics in Civil Engineering Structures:

Soil-Structure Interaction (3L, Dr S.K Haigh)

Non-linear Systems

á Sources of nonlinearity in structures and foundations

Soils during earthquakes

á Earthquake loading on structures; response and design spectra;

á Structures subject to ground motion; deformations due to lateral accelerations; Newmark’s sliding block analysis; concept of threshold acceleration

á Foundations effects; stiffness of soil foundation and soil-structure interaction;

á Pore pressure build-up during earthquakes; partial liquefaction; degradation in soil stiffness; non-linear soil models.

á Liquefaction resistant design, simple examples.

Earthquakes Effects on Structures and Seismic resistant design (3L, Prof F.A. McRobie)

Response Spectrum Analysis for Earthquakes

á Introduction to Response Spectrum Analysis

á Earthquake Spectra and Design Spectra, Design of linear systems
Non-linear Response Spectrum Analysis, Ductility in Structures

Seismic Resistant Design

- Structural design and detailing considerations.

Wind Engineering and Blast Resistant Design (3L, Prof F.A. McRobie)

Wind loading

- Nature of wind;
- Wind forces on structures.
- Response of structures to buffetting.

Blast Loading

- Physics of blasts; blast effects on structures; blast-resistant design.

Coursework

Seismic analysis of an existing tall building using the ABAQUS finite element package and a study of the effect of foundation softening on the overall structural response. Total time 8 hours.

<table>
<thead>
<tr>
<th>Coursework Activity 1</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning objective:</td>
<td>Individual Report</td>
<td>4.00pm, 19 Feb 2020 on Moodle</td>
</tr>
<tr>
<td></td>
<td>anonymously marked</td>
<td>10 out of 25 marks</td>
</tr>
<tr>
<td>• Simplified Analysis of a multi-storied building in Mexico City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use of ABAQUS to carry out dynamic analysis and determine mode shapes and frequencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Simple estimates of the response to the earthquake</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coursework Activity 2</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning objective:</td>
<td>Individual Report</td>
<td>4.00pm, 16 Mar 2020 on Moodle</td>
</tr>
<tr>
<td></td>
<td>anonymously marked</td>
<td>15 out of 25 marks</td>
</tr>
<tr>
<td>• Time Domain Analysis of the multi-storied building in Mexico City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Determination of time histories in response to an input earthquake (Mexico earthquake of 1983)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Please see the Booklist for Group D Courses [3] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [4].

Last modified: 16/01/2020 10:38

Source URL (modified on 16-01-20): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4d6-dynamics-civil-engineering-2019-20

Links

[1] mailto:fam20@cam.ac.uk
[2] mailto:fam20@cam.ac.uk, jpt1000@cam.ac.uk, skh20@cam.ac.uk