Engineering Tripos Part IIB, 4G1: Mathematical biology of the cell, 2016-17

Module Leader

Dr Thierry Savin [1]

Lecturers

Timothy O'Leary

Timing and Structure

16 lectures (including 2 examples classes). Lent Term. Assessment: Coursework 100%

Aims

The aims of the course are to:

- introduce to sub cellular processes and the role of thermal fluctuations
- shift from the classical biology approach to a more physical description
- illustrate mathematical/computing approaches to study regulatory networks and biomolecular dynamics
- provide background knowledge on stochastic processes

Syllabus

The course covers topics in stochastic processes and statistical mechanics with application to examples from biology. No background in biology is assumed.

Introduction (Savin)

- Cells are a very well organized machinery
- But molecular processes are subject to fluctuations, i.e. stochasticity
- How is it possible?

Mathematical formalism (Savin)

- Probabilities & Random Variables
- Stochastic Processes
- Master Equation, Fokker-Plank Equation

Regulation of gene expression (Vinnicombe)

- Gene expression analysis
- Stochastic gene expression
- Stochastic simulations

Cell structural organization (Savin)

- Biomolecules (DNA, cytoskeleton)
- Statistical physics for biology
- Polymer mechanics
Transport processes in cells

Booklists

Please see the Booklist for Group G Courses [2] for references for this module.

Assessment

Please refer to Form & conduct of the examinations [3].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [4] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [5] which sets out the standard for degree accreditation.

The Output Standards Matrices [6] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 31/05/2016 09:11

Source URL (modified on 31-05-16): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4g1-mathematical-biology-cell-2016-17

Links

[1] mailto:t.savin@eng.cam.ac.uk