Leader

Prof A Seshia

Lecturers

Prof A Seshia and Professor E A Hall

Timing and Structure

Lent term. Lectures and coursework. Assessment: 100% coursework.

Aims

The aims of the course are to:

- link engineering principles to understanding of biosystems in sensors and bioelectronics

Objectives

As specific objectives, by the end of the course students should be able to:

- extend principles of engineering to the development of bioanalytical devices and the design of biosensors.
- understand the principles of linking cell components and biological pathways with energy transduction, sensing and detection
- appreciate the basic configuration and distinction among biosensor systems.
- demonstrate appreciation for the technical limits of performance.
- make design and selection decisions in response to measurement problems amenable to the use of biosensors.

Content

This course covers the principles, technologies, methods and applications of biosensors and bioinstrumentation. The objective of this course is to link engineering principles to understanding of biosystems in sensors and bioelectronics. It will provide the student with detail of methods and procedures used in the design, fabrication and application of biosensors and bioelectronic devices. The fundamentals of measurement science are applied to optical, electrochemical, mass, and pressure signal transduction. Upon successful completion of this course, students are expected to be able to explain biosensing and transduction techniques, as well as design and construct biosensor instrumentation.

Introduction

- Overview of Biosensors
- Fundamental elements of biosensor devices
- Engineering sensor proteins

Electrochemical Biosensors
Electrochemical principles
- Amperometric biosensors and charge transfer pathways in enzymes
- Glucose biosensors
- Engineering electrochemical biosensors

Optical Biosensors
- Optics for biosensors
- Attenuated total reflection systems

Acoustic Biosensors
- Analytical models
- Acoustic sensor formats
- Quartz crystal microbalance

Micro- and Nano-technologies for biosensors
- Microfluidic interfaces for biosensors
- DNA and protein microarrays
- Microfabricated PCR technology

Diagnostics for the real world
- Communication and tracking in health monitoring
- Detection in resource limited settings

Coursework
The coursework will be assessed on two marked assignments. The first assignment will involve a laboratory session illustrating the functional demonstration of glucose sensor technology. The second assignment will involve a laboratory session illustrating the principle of a quartz crystal microbalance and related acoustic sensor technologies.

<table>
<thead>
<tr>
<th>Coursework activity #1 Glucose biosensors</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning objectives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- To introduce students to electrochemical sensors employed for the measurement of glucose;</td>
<td>Individual Report</td>
<td>Mon week 5</td>
</tr>
<tr>
<td>- To quantitatively analyse measurements conducted using test strip glucose biosensors on a range of samples;</td>
<td>anonymously marked</td>
<td>[30/60]</td>
</tr>
<tr>
<td>- To extend the principles to the design of a biosensor for the measurement of lactate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coursework activity #2 Quartz crystal microbalance</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning objectives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- To introduce experimental techniques associated with employing the quartz crystal microbalance as a sensor;</td>
<td>Individual Report</td>
<td>Wed week 9</td>
</tr>
<tr>
<td>- To assess the validity of analytical models associated with the operation of a quartz crystal microbalance and comment on discrepancies between theory and experiment;</td>
<td>anonymously marked</td>
<td>[30/60]</td>
</tr>
</tbody>
</table>
Coursework

<table>
<thead>
<tr>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>To extend concepts covered in the lectures and the laboratory to the conceptual design of an integrated acoustic sensor platform for the rapid screening and detection of infectious agents.</td>
<td></td>
</tr>
</tbody>
</table>

Booklists

Please see the [Booklist for Group G Courses][2] for references for this module.

Examination Guidelines

Please refer to [Form & conduct of the examinations][3].

UK-SPEC

The [UK Standard for Professional Engineering Competence (UK-SPEC)][4] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [5] which sets out the standard for degree accreditation.

The [Output Standards Matrices][6] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 17/05/2018 14:26

Source URL (modified on 17-05-18): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4g2-biosensors-2018-19

Links

[1] mailto:aas41@cam.ac.uk