Engineering Tripos Part IIB, 4G4: Biomimetics, 2017-18

Module Leader

Dr M Oyen [1]

Lecturers

Dr M Oyen, Dr F Iida, and Dr W Federle

Timing and Structure

Lent term. 12 lectures + Group project work. Assessment: 100% coursework

Aims

The aims of the course are to:

- Develop an understanding the ways engineers adopt and adapt ideas from nature and make new engineering entities.

Objectives

As specific objectives, by the end of the course students should be able to:

- Understand how scientists are borrowing from nature across many different fields of engineering, with in-depth understanding on one topic (project)
- Identify new possibilities for biomimesis in design.
- Learn how to read the current biomimetics literature.

Content

Introduction and Project assignment (M. Oyen, CUED) (2L)

Bioinspired Robotics (F. Iida, CUED) (2L)
- Legged robot locomotion and underactuated motion control
- Soft robotics and bio-inspired actuation

Biomimetic adhesion and adhesives (W. Federle, Zoology) (4L)
- Attachment devices and mechanisms in nature
- Approaches to develop biomimetic adhesives

Biomimetic materials (M. Oyen, CUED) (4L)
- Protein-based structural materials
- Protein folding, weak bonding, hydration
- Biomineralisation
- Biosilification, calcium carbonates, calcium phosphates
- Composite mechanics applied to natural materials
Polymer amphiphiles
Self-healing materials

Project Presentations (2L)

Further notes

Further details and online resources:-

http://www-g.eng.cam.ac.uk/lifesciences/courses.html [2]

Coursework

Students will work in groups of 2-3 on a biomimetics design portfolio for one specific case from any of the following: biomimetic materials (e.g. bone, shell); natural structures (e.g. photonic crystals, lotus paint, adhesives); robots that swim, fly, or crawl like creatures; or any other topic identified as acceptable via discussion with the module leader. The marking will be as follows:

20% on a group mid-term presentation of the selected project and literature review (occupying the final 2 lecture slots)

30% on an individual preliminary paper (4 pages) comparing a natural system to current engineering practice

50% on an individual design dossier - a detailed analysis of the selected biomimetic solution including quantitative comparisons and calculations, with optional prototypes or experiments.

<table>
<thead>
<tr>
<th>Coursework activity #1 title / Interim</th>
<th>Coursework 1 brief description</th>
<th>Learning objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual/group Report / Presentation</td>
<td>[non] anonymously marked</td>
<td>Thu week 3 [xx/60]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coursework activity #2 title / Final</th>
<th>Coursework 2 brief description</th>
<th>Learning objective</th>
</tr>
</thead>
</table>

Booklists

Please see the Booklist for Group G Courses [3] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [4].
UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the ‘Accreditation of Higher Education Programmes’ (AHEP) document which sets out the standard for degree accreditation.

The Output Standards Matrices indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 04/08/2017 15:52

Source URL (modified on 04-08-17): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4g4-biomimetics-2017-18

Links
[1] mailto:mlo29@cam.ac.uk