
Module Leader
Dr E Shwageraus

Lecturers
Dr E Shwageraus, Mr A Roulstone

Timing and Structure
Lent term. 16 lectures, 4 examples papers, 2 examples classes in support of coursework. Assessment: 100% coursework

Prerequisites
4M16

Aims
The aims of the course are to:

- provide an understanding of advanced systems, why they are being pursued, what are their advantages and their difficulties in becoming commercially viable designs.

Content
Further aims:

- What are the factors that are driving the development of advanced systems?
- Overview of fast reactor development & Gen IV reactor systems, including accelerator driven sub-critical reactors;
- Introduce the principles of fusion energy physics and the current status of research;
- Explain how the principles of fusion energy are to be applied for the design of future fusion energy systems;
- Re-cycle fuel studies, including reprocessing and re-fabrication;
- Status, issues and what would be needed to bring advanced reactor systems to a commercial standard with safety and economics as good as current Generation III+ designs

Fission Systems
- Design objectives, drivers & alternatives (2l)
- Advanced Thermal systems – example high temperature gas reactor(2l)
- Fast Spectrum Reactor systems – including external Dr A Judd(4l)
- Transmutation and Advanced Fuel cycles (2l)

Fusion Systems
Introduction & Physics of fusion systems - Dr C. Roach CCFE (2l)
Fusion reactions: cross sections and reactivity
Magnetic and inertial approaches to fusion
Equilibrium, transport, instabilities and power balance

Physics & Materials - Dr M. Fleming CCFE (2l)

- Heating systems and current drive
- Layout of a fusion power plant
- Fusion reactor components and materials requirements

Performance Safety and Design Dr M. Fleming CCFE (2l)

- Safety of a fusion
- Radiological hazards and waste products
- Fusion in the market and timescale to fusion
- Designing a fusion power plant

Examples papers

- Thermal reactor systems (High Temperature Gas-cooled Reactors)
- Fast Reactors
- Fusion: plasma physics and reactor engineering

Coursework

1. Fast reactor transient analysis using provided computer models. This part of coursework will be preceded by an examples class, where these models will be introduced and demonstrated.

2. Group project (3-4 students) researching into a particular advanced reactor design. This part will be assessed by a group presentation to the rest of the class. The presentations will be scheduled at a convenient time outside the normal lectures schedule.

3. Problem set on advanced fission reactors, plasma physics and fusion technology.
Coursework

<table>
<thead>
<tr>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booklists

Please see the [Booklist for Group I Courses](http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4i11-advanced-fission-and-fusion-system-2014-15) [2] for references for this module.

Examination Guidelines

Please refer to [Form & conduct of the examinations](http://teaching.eng.cam.ac.uk/content/form-conduct-examinations) [3].

Last modified: 04/08/2017 15:55

Source URL (modified on 04-08-17): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4i11-advanced-fission-and-fusion-system-2017-18

Links

[1] mailto:es607@cam.ac.uk