
Module Leader
Dr G Parks [1]

Lecturers
Dr N Read [2]

Timing and Structure
Lent Term. 16 lectures, 4 examples papers, 2 examples classes in support of coursework. Assessment: 100% coursework

Prerequisites
4M16

Aims
The aims of the course are to:

- provide an understanding of advanced systems, why they are being pursued, what their advantages are and their difficulties in becoming commercially viable designs.

Content
Further aims:

- What are the factors that are driving the development of advanced systems?
- Overview of fast reactor development & Generation IV reactor systems, including accelerator driven sub-critical reactors;
- Introduce the principles of fusion energy physics and the current status of research;
- Explain how the principles of fusion energy are to be applied for the design of future fusion energy systems;
- Re-cycle fuel studies, including reprocessing and re-fabrication;
- Status, issues and what would be needed to bring advanced reactor systems to a commercial standard with safety and economics as good as current Generation III+ designs

Fission Systems
- Design objectives, drivers & alternatives (2L)
- Advanced thermal systems – example high temperature gas-cooled reactor (2L)
- Fast spectrum reactor systems – including external lecturer A Judd (4L)
- Transmutation and advanced fuel cycles (2L)

Fusion Systems
Introduction & Physics of Fusion Systems - CCFE (2L)
• Fusion reactions: cross-sections and reactivity
• Magnetic and inertial approaches to fusion
• Equilibrium, transport, instabilities and power balance

Physics & Materials - CCFE (2L)

• Heating systems and current drive
• Layout of a fusion power plant
• Fusion reactor components and materials requirements

Performance Safety and Design - CCFE (2L)

• Safety of a fusion reactor
• Radiological hazards and waste products
• Fusion in the market and timescale to commercial fusion plant
• Designing a fusion power plant

Examples papers

- Thermal Reactor Systems (High Temperature Gas-cooled Reactors)
- Fast Reactors
- Fusion: Plasma Physics and Reactor Engineering

Coursework

Coursework #1

Group project (3-4 students) researching into a particular advanced reactor design.

This part will be assessed by a group presentation to the rest of the class.

The presentations will be scheduled at a convenient time outside the normal lectures schedule.

Learning objective:

• Research in depth one of the advanced reactor systems
• Become familiar with a broad range of advanced systems, their strengths and weaknesses

Coursework #2

Fast reactor transient analysis using provided computer models.

This part of the coursework will be preceded by an examples class, where these models will be introduced and demonstrated.

Learning objective:

• Understand fundamentals of fast reactor transient behaviour and safety

Coursework #3
Problem set on advanced fission reactors, plasma physics and fusion technology.

**Learning objective:**
- Understand fundamentals of fusion power systems physics and engineering

**Booklists**

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

**Examination Guidelines**

Please refer to [Form & conduct of the examinations](http://teaching.eng.cam.ac.uk/content/form-conduct-examinations) [3].

Last modified: 04/10/2020 17:29

**Source URL (modified on 04-10-20):** http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4i11-advanced-fission-and-fusion-system-2020-21

**Links**

[1] mailto:gtp10@cam.ac.uk
[2] mailto:nr438@cam.ac.uk