Module Leader
Prof G Malliaras [1]

Lecturer
Prof G Malliaras & Prof E Hall [2]

Timing and Structure
Lent term. Lectures and coursework. Assessment: 100% coursework.

Aims
The aims of the course are to:

- Link engineering principles to understanding of biosystems in sensors and bioelectronics.

Objectives
As specific objectives, by the end of the course students should be able to:

- Extend principles of engineering to the development of biosensors and bioelectronic devices.
- Understand the principles of signal transduction between biology and electronics. • appreciate the basic configuration and distinction among biosensors and bioelectronic systems.
- Appreciate the basic configuration and distinction among biosensors and bioelectronic systems.
- Demonstrate appreciation for the technical limits of performance.
- Make design and selection decisions in response to measurement and actuation problems amenable to the use of biosensors and bioelectronic devices.
- Be able to evaluate novel trends in the field.

Content
This course covers the principles, technologies, methods and applications of biosensors and bioelectronics. The objective of this course is to link engineering principles to understanding these biosystems. It will provide the student with detail of methods and procedures used in the design, fabrication and application of biosensors and bioelectronic devices. The fundamentals of measurement science are applied to electrochemical and optical signal transduction. The fundamentals of electrophysiology are applied to implantable and cutaneous bioelectronic devices. Upon successful completion of this course, students are expected to be able to explain biosensing and transduction techniques, design and construct biosensor instrumentation, and explain the techniques of recording and stimulation of electrically active cells and tissues.

Introduction to Biosensors
- Overview of Biosensors
- Fundamental elements of biosensor devices
- Engineering sensor proteins
Electrochemical Biosensors

- Electrochemical principles
- Amperometric biosensors and charge transfer pathways in enzymes
- Glucose biosensors
- Engineering electrochemical biosensors

Optical Biosensors

- Optics for biosensors
- Attenuated total reflection systems

Diagnostics for the real world

- Communication and tracking in health monitoring
- Detection in resource limited settings

Introduction to Bioelectronics

- Neurons and other electrically active cells
- Recording and stimulation of electrically active cells
- Foreign body response

Implantable electronic medical devices

- Cardiac pacemaker
- Cochlear implants
- Deep brain and spinal cord stimulators
- Brain-Computer Interfaces
- Ethical and regulatory issues

Wearable devices

- Wearable electrophysiology devices
- Wearable biosensors
- Power, processing and communication
- Emerging trends

Coursework

The coursework will be assessed on two marked assignments. The first assignment will involve a laboratory session illustrating the functional demonstration of glucose sensor technology. The second assignment will involve a laboratory session illustrating the principles of electrophysiology applied to bioelectronic devices.

<table>
<thead>
<tr>
<th>Coursework activity #1 : Glucose biosensors</th>
<th>Format</th>
<th>Due date & marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning objectives:</td>
<td>Individual Report</td>
<td>21 February 2</td>
</tr>
<tr>
<td>To introduce students to electrochemical</td>
<td>anonymously marked</td>
<td>[30/60]</td>
</tr>
<tr>
<td>sensors employed for the measurement of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glucose.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To quantitatively analyse measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conducted using test strip glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biosensors on a range of samples.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To explore the principles of accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and precision and their application to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinical measurements and their impact on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinical decision making.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coursework

• To extend the principles to the design of a biosensor for the measurement of lactate.

[Coursework activity #2 : Cutaneous electrophysiology]

Learning objectives:

• To introduce students to sensors employed for the measurement of electrophysiology.
• To explore different recording configurations.
• To quantitatively analyse measurements conducted using cutaneous electrodes.
• To extend the principles to the design of a sensor for the measurement of biopotentials.

Individual Report

Due date & marks

20 March 2020

[30/60]

Booklists

Please see the Booklist for Group I Courses [3] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [4].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [5] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the ‘Accreditation of Higher Education Programmes’ (AHEP) document [6] which sets out the standard for degree accreditation.

The Output Standards Matrices [7] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 06/06/2019 13:15

Links

[1] mailto:gm603@cam.ac.uk
[2] mailto:gm603@cam.ac.uk, eah16@cam.ac.uk