Module Leader

Professor M Pollitt

Lecturer

Professor M Pollitt

Timing and Structure

Lent term. 2 hour sessions. Assessment: 100% coursework.

Prerequisites

Students should have a basic engineering knowledge of electricity (first year undergraduate) and a familiarity with the units and notation associated with energy science and engineering. An understanding of undergraduate engineering thermodynamics is desirable if the full benefits of the course are to be achieved. Assessment will be structured so as to be accessible to students from a range of backgrounds although basic undergraduate physics or engineering proficiency is expected.

Aims

The aims of the course are to:

- provide students with a firm foundation in modern electricity policy with an emphasis on the UK.
- introduce students to a wide a variety of mature and emergent electricity generation and demand side technologies.
- expose students to the local, regional and global environmental effects of energy use.
- introduce the key considerations of energy policy and develops frameworks by which progress against policy goals may be achieved.

Content

This module is a postgraduate module of Cambridge Judge Business School. It has its origins as an elective course of the MPhil in Technology Policy and the MPhil in Engineering for Sustainable Development. The module is of the standard size adopted in the Engineering Department and the Judge Business School, i.e. a nominal 16 hours. The course is delivered via one two-hour lecture each week for eight weeks.

Overview - Class Introduction - Michael Pollitt

Lecture 1

- Fundamentals of the UK and USA Electricity System.
- UK Energy Policy and Politics.
- Recent UK Energy White Papers.

Environmental Effects of Fossil Fuel Use and what to do about them (Michael Pollitt)
Lecture 2

- Air Pollution
- Climate Change
- Science of energy related climate change
- Strategies for reducing risk
- Impact of climate change negotiations

Electricity Demand (Michael Pollitt)

Lecture 3

- Economics of Electricity Demand
- Technological aspects of electricity demand
- Social aspects of electricity demand
- Demand side policy

Wind Energy (Jim Platts)

Lecture 4

- Attributes of wind power
- Technology and history
- Wind resources and grid integration
- UK and EU wind policy
- Wind turbine manufacture

Fossil fuel generation, storage and future electricity markets (Michael Pollitt)

Lecture 5

- Current status of fossil-fuel power generation.
- Economics of Carbon Capture and Storage
- Electricity storage
- The economics of electricity storage
- Future electricity market design

Renewables and the Electricity System (Michael Pollitt)

Lecture 6

- Renewables context
- Potential for renewables in the UK.
- Place of renewables in electricity system.
- How to subsidise renewables.
- Lessons form around the world.

Electricity Networks (Richard McMahon)

Lecture 7

- Transmission and distribution system engineering considerations
- Design and operation
History of the grid and legacy issues

Distributed Generation

High voltage DC and interconnection

Nuclear Power, Electricity Security and EU Policy (Michael Pollitt)

Lecture 8

- The economics of Nuclear Power
- Energy Security
- EU Energy Policy
 - EU 20:20:20 by 2020 Targets
 - EU 2030 Targets
 - Roadmap 2050

Coursework

<table>
<thead>
<tr>
<th>Coursework</th>
<th>Format</th>
<th>Due date</th>
<th>& marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>First piece of coursework</td>
<td>Individual report</td>
<td>12 February</td>
<td>[30/100]</td>
</tr>
<tr>
<td>Use the UK 2050 calculator to generate own electricity related scenario.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning objectives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- To develop an internally consistent quantified energy scenario for a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real economy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- To get a sense of the scale of the difficulty of the energy transition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>challenges for electricity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second piece of coursework</td>
<td>Individual Report</td>
<td>24 April</td>
<td>[70/100]</td>
</tr>
<tr>
<td>Essay on the 2030 decarbonisation challenge facing the UK electricity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning objectives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- To discuss the challenge of decarbonising the UK electricity system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by 2030.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- To cover both the economic and engineering challenges facing the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK electricity system.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Booklists

Expected reading:

Recommended reading:

Examination Guidelines

Please refer to Form & conduct of the examinations [4].

UK-SPEC

The UK Standard for Professional Engineering Competence (UK-SPEC) [5] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [6] which sets out the standard for degree accreditation.

The Output Standards Matrices [7] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.

Last modified: 11/08/2017 12:29

Source URL (modified on 11-08-17): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4i7-electricity-environment-2017-18

Links
[1] mailto:mgp20@cam.ac.uk