Module Leader
Dr G Treece [1]

Lecturer
Dr S Bohndiek

Timing and Structure
Lent Term. Assessment: 100% exam

Prerequisites
3G4 useful

Aims
The aims of the course are to:

- Describe the importance of physics in medicine
- Understand the general principles of medical image reconstruction and registration
- Compare and contrast the medical imaging techniques that are available in a hospital setting and explain their relative merits
- Explain the difference between imaging with ionising and non-ionising radiation in the context of radiation dosimetry and risk
- Describe sensing and therapeutic applications of physics in medicine

Content
The material should be accessible to all Part IIA Bioengineering and Part III Physics students. The course is divided into two parts: the first 6 lectures concentrate on the basic physics of biomedical imaging, while the second 6 lectures (given by Addenbrookes hospital staff) provide a broad insight into the applications of physics in medicine. The latter half of the course should be accessible to all those with an interest in medical physics

Introduction
Historical background; radiation interactions; general imaging concepts; and contrast mechanisms.

Medical Imaging Methodology
For all clinically applicable imaging techniques, a detailed description of contrast mechanisms, data acquisition hardware and image reconstruction will be provided. This will cover: imaging with ionising radiation, including X-ray, CT, nuclear medicine, SPECT and PET; imaging with non-ionising radiation, including MRI and ultrasound; and general principles of image reconstruction and registration of images over time and between modalities.

Clinical Applications of Physics
Clinical examples of the utility of medical imaging in diagnosis and treatment of disease. Sensing applications of physics in hospitals, including patient monitoring. Therapeutic applications of physics, particularly radiotherapy in cancer patients.

Booklists

Examination Guidelines

Please refer to [Form & conduct of the examinations](http://teaching.eng.cam.ac.uk/content/form-conduct-examinations) [3].

UK-SPEC

The [UK Standard for Professional Engineering Competence (UK-SPEC)](http://www.engc.org.uk/ukspec.aspx) [4] describes the requirements that have to be met in order to become a Chartered Engineer, and gives examples of ways of doing this.

UK-SPEC is published by the Engineering Council on behalf of the UK engineering profession. The standard has been developed, and is regularly updated, by panels representing professional engineering institutions, employers and engineering educators. Of particular relevance here is the 'Accreditation of Higher Education Programmes' (AHEP) document [5] which sets out the standard for degree accreditation.

The [Output Standards Matrices](http://teaching.eng.cam.ac.uk/content/output-standards-matrices) [6] indicate where each of the Output Criteria as specified in the AHEP 3rd edition document is addressed within the Engineering and Manufacturing Engineering Triposes.