Leader

Dr F Iida [1]

Lecturers

Dr F Iida, Prof R Cipolla, Dr A Rosendo [2]

Timing and Structure

Michaelmas term, 100% coursework

Prerequisites

3C5 useful; 3C8 useful; 3F2 useful; 3F3 useful

Aims

The aims of the course are to:

- Introduce fundamentals of robotics
- Case studies of practical applications such as robotic manipulation, locomotion and navigation
- Hands-on exercises on robot development through projects
- Presentation of research and development

Objectives

As specific objectives, by the end of the course students should be able to:

- understand different design strategies and architectures of intelligent and adaptive machines.
- design and integrate systems with basic components (actuators, sensors, controllers, and simulators).
- model and analyze kinematics and dynamics of robot systems.

Syllabus

Introduction 2 Lectures (F. Iida)

- Landscape of robotics: Theories, technologies, applications and research areas

- Fundamentals of intelligent autonomous robots; Robotics and AI (Intelligence as search algorithms, Frame problem, Frame-of-reference problem, Grounding problem, Embodiment, DoF problem); Robotics and biology (Similarities and differences, Biological inspirations, Modeling of animals and machines, Case studies)

- The spectrum of robot architecture (Sense-Think-Act paradigm, Reflex based architecture, Behavior-based architecture, Passivity-based architecture)

- Introduction of research tools and areas (mainly for coursework)
Robot motion control 4 Lectures (F. Iida)
- Kinematic and dynamic control of robot motions (robotic arms, hands, wheels, legs)
- Underactuated robotics, passivity-based robot control, impedance control
- Simulation and analysis of robot motion and stability

Robot planning and navigation 2 Lectures (A. Rosendo)
- Theories and methods for planning of complex robot motions
- Theories and methods for robot navigation

Robot vision and perception 2 Lectures (R. Cipolla)
- Robot vision and robot sensors
- State-estimation, categorization, learning

Robot learning and autonomy 2 Lectures (F. Iida)
- Theories and methods of robot learning
- Case studies of robot learning and autonomy

Advanced topics and case studies 2 lectures (F. Iida and possibly other guest lecturers)
- Discussion of a few case studies out of advanced topics such as autonomous vehicle/UAV navigation, surgical/medical robotics, rehabilitation and healthcare robotics, industrial and service robotics, domestic robotics, human-robot interactions, bio-inspired robotics, computer vision and graphics

Project presentation and competition 2 lectures (F. Iida)
- Students should present the simulation models of their robots and discuss outcome of the investigations

Coursework
Each student will be assessed by the following three components of coursework:

30%: Individual report to a problem set. The problem set consists of theoretical questions about robot control as well as some hands-on exercise on robot simulation. Details will be instructed in the first lecture.

20%: Group presentation and robot competition. Students will work in a team of 2-4 people to develop and investigate their own manipulation/locomotion robots based on the kits provided. In the last week of the term, each team should give a 5-minute presentation and demonstrate the performance for competition. Details will be instructed in the first and second lectures.

50%: Individual dossier about the development and investigation of the projects. Each student should write a report about the project, and demonstrate how the theories and methods introduced in the lectures are used.

Booklists
Please see the Booklist for Group M Courses for references for this module.

Assessment
Please refer to Form & conduct of the examinations [3].

Last modified: 28/10/2016 15:35

Source URL (modified on 28-10-16): http://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iib-4m20-robotics-2016-17

Links
[1] mailto:fi224
[2] mailto:fi224@cam.ac.uk, rc10001@cam.ac.uk, alm87@cam.ac.uk