Part IIB syllabuses; links to online resources

Published on CUED undergraduate teaching (http://teaching.eng.cam.ac.uk)

Part IIB syllabuses; links to online resources

Index

- Group A: Energy, Fluid Mechanics and Turbomachinery
- Group B: Electrical Engineering
- Group C: Mechanics, Materials and Design
- Group D: Civil, Structural and Environmental Engineering
- Group E: Management and Manufacturing
- Group F: Information Engineering
- Group G: Bioengineering
- Group I: Imported Modules
- Group M: Multidisciplinary Modules

Note that all modules are assessed by 100% Coursework, or 100% Examination, or 75% Examination and 25% Coursework. In all cases, the definitive form of assessment is given in the Faculty Board's Modules & Sets document. The Faculty Board also publish an outline of the coursework requirements for Part IIB 100% coursework modules but you should see the module syllabus pages for further details.

Interactive booklists for Part IIB are available on Moodle.

Course material on Moodle

Group A: Energy, Fluid Mechanics and Turbomachinery

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites Assumed</th>
<th>Prerequisites Useful</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A2</td>
<td>Computational fluid dynamics</td>
<td>M(1)</td>
<td>Coursework</td>
<td>3A1, 3A3</td>
<td></td>
<td>Moodle</td>
<td>Dr J Li</td>
</tr>
<tr>
<td>4A3</td>
<td>Turbomachinery</td>
<td>M(4)</td>
<td>Exam and coursework</td>
<td>3A1, 3A3</td>
<td></td>
<td>Moodle</td>
<td>Dr A Wheeler</td>
</tr>
<tr>
<td>4A4</td>
<td>Aircraft stability and control</td>
<td>M(6)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr W.R. Graham</td>
</tr>
<tr>
<td>4A7</td>
<td>Aircraft Aerodynamics and Design</td>
<td>M(8)</td>
<td>Coursework</td>
<td>3A1, 3A3</td>
<td></td>
<td>Moodle</td>
<td>Dr J. Jarrett</td>
</tr>
<tr>
<td>4A9</td>
<td>Molecular thermodynamics</td>
<td>M(7)</td>
<td>Exam</td>
<td>3A1, 3A5</td>
<td></td>
<td>Moodle</td>
<td>Dr A. J. White</td>
</tr>
<tr>
<td>4A12</td>
<td>Turbulence and vortex dynamics</td>
<td>M(1 1)</td>
<td>Exam</td>
<td>3A1</td>
<td>3A3</td>
<td>Moodle</td>
<td>Prof P. Davidson</td>
</tr>
<tr>
<td>4A13</td>
<td>Combustion and engines</td>
<td>L(5)</td>
<td>Exam</td>
<td>3A5, 3A6</td>
<td></td>
<td>Moodle</td>
<td>Prof N Swaminathan</td>
</tr>
<tr>
<td>4A15</td>
<td>Aeroacoustics</td>
<td>L(11)</td>
<td>Exam</td>
<td>3A1</td>
<td></td>
<td>Moodle</td>
<td>Dr A Agarwal</td>
</tr>
</tbody>
</table>

Group B: Electrical Engineering

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites Assumed</th>
<th>Prerequisites Useful</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4B2</td>
<td>Power microelectronics</td>
<td>M(6)</td>
<td>Exam</td>
<td>3B3, 3B5</td>
<td></td>
<td>Moodle</td>
<td>Prof F. Udrea</td>
</tr>
<tr>
<td>4B5</td>
<td>Quantum and Nanotechnologies</td>
<td>M(1 1)</td>
<td>Exam</td>
<td>3B5</td>
<td></td>
<td>Moodle</td>
<td>Prof C. Durkan</td>
</tr>
<tr>
<td>4B11</td>
<td>Photonic systems</td>
<td>M(5)</td>
<td>Exam</td>
<td>3B6</td>
<td></td>
<td>Moodle</td>
<td>Prof T. Wilkinson</td>
</tr>
</tbody>
</table>

Page 1 of 5
Module Code: Electronic sensors and instrumentation

Term (set): L(1)
Form of assessment: Exam
Prerequisites:
- Assumed: 3B1
- Useful: Moodle
On-line resources: Dr P A Robertson

Module Code: Renewable electrical power

Term (set): M(2)
Form of assessment: Exam
Prerequisites:
- Assumed: 3B3, 3B4, 3B6
On-line resources: Moodle
Leader: Dr T. Flack

Module Code: Optical Fibre Communication

Term (set): L(2)
Form of assessment: Exam and coursework
Prerequisites:
- Assumed: 3F4, 3B6
On-line resources: Moodle
Leader: Prof S J Savory

Module Code: Radio frequency systems

Term (set): L(4)
Form of assessment: Exam and coursework
Prerequisites:
- Assumed: 3B1
On-line resources: Moodle
Leader: Dr M J Crisp

Module Code: Embedded systems for the internet of things

Term (set): M(7)
Form of assessment: Coursework
Prerequisites:
- Assumed: 3B2
On-line resources: Moodle
Leader: Dr P Stanley-Marbell

Group C: Mechanics, Materials and Design

Module Code: Designing with composites

Term (set): M(3)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: Moodle
On-line resources: Prof M.P.F. Sutcliffe

Module Code: Advanced Functional Materials and Devices

Term (set): M(8)
Form of assessment: Exam
Prerequisites:
- Assumed: 3B5
On-line resources: Moodle
Leader: Dr J H Durrell

Module Code: Design methods

Term (set): M(2)
Form of assessment: Exam
Prerequisites:
- Assumed: Moodle
On-line resources: Dr JM Cullen

Module Code: Design case studies

Term (set): L(4)
Form of assessment: Coursework
Prerequisites:
- Assumed: 4C5
On-line resources: Moodle
Leader: Dr N. Crilly

Module Code: Advanced linear vibrations

Term (set): M(4)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: 3C6
On-line resources: Moodle
Leader: Dr JP Talbot

Module Code: Random and non-linear vibrations

Term (set): M(5)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: 3C6
On-line resources: Moodle
Leader: Prof. AA Seshia

Module Code: Vehicle Dynamics

Term (set): L(8)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: 3C5, 3C6
On-line resources: Moodle
Leader: Prof D Cebon

Module Code: Continuum mechanics

Term (set): L(7)
Form of assessment: Exam
Prerequisites:
- Assumed: 3C7, 3D7
On-line resources: Moodle
Leader: Dr G McShane

Module Code: MEMS: design

Term (set): L(3)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: Moodle
On-line resources: Prof A. Seshia

Group D: Civil, Structural and Environmental Engineering

Module Code: Construction engineering

Term (set): L(11)
Form of assessment: Coursework
Prerequisites:
- Assumed: 3D1, 3D2, 3D3, 3D4, 3D5, 4D16
On-line resources: Moodle
Leader: Prof G Viggiani

Module Code: Foundation engineering

Term (set): M(8)
Form of assessment: Exam
Prerequisites:
- Assumed: 3D2
On-line resources: Moodle
Leader: Dr S Stanier

Module Code: Dynamics in civil engineering

Term (set): L(2)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: 3D2, 3D3, 3D4, 3D7
On-line resources: Moodle
Leader: Prof. F A McRobie

Module Code: Concrete and Prestressed concrete

Term (set): M(4)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: 2P8, 3D3
On-line resources: Moodle
Leader: Dr J Orr

Module Code: Offshore Geotechnical Engineering

Term (set): L(5)
Form of assessment: Exam
Prerequisites:
- Assumed: 3D2
On-line resources: Moodle
Leader: Dr C.N. Abadie

Module Code: Structural steelwork

Term (set): M(3)
Form of assessment: Exam and Coursework
Prerequisites:
- Assumed: 3D4
On-line resources: Moodle
Leader: Dr J Becque

Module Code: Architectural engineering

Term (set): M(12)
Form of assessment: Coursework
Prerequisites:
- Assumed: 3D3, 3D4, 3D8
On-line resources: Moodle
Leader: Dr R Foster
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites Assumed</th>
<th>Prerequisites Useful</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D1 4</td>
<td>Contaminated land and waste containment</td>
<td>M(7)</td>
<td>Exam and Coursework</td>
<td>3D8</td>
<td>Moodle</td>
<td>Prof A Al-Tabbaa</td>
<td></td>
</tr>
<tr>
<td>4D1 5</td>
<td>Management of resilient water systems</td>
<td>L(6)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Prof R. Fenner</td>
</tr>
</tbody>
</table>

Group E: Management and Manufacturing

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites Assumed</th>
<th>Prerequisites Useful</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4E1</td>
<td>Innovation and strategic management of intellectual property</td>
<td>M(9)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr F Tietze</td>
</tr>
<tr>
<td>4E3</td>
<td>Business innovation in a digital age</td>
<td>M(9)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr K Sayegh</td>
</tr>
<tr>
<td>4E4</td>
<td>Management of technology</td>
<td>M(9)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr L. Mortara</td>
</tr>
<tr>
<td>4E6</td>
<td>Accounting and finance</td>
<td>M(9)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr O. Cole</td>
</tr>
<tr>
<td>4E1 1</td>
<td>Strategic management</td>
<td>L(12)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Prof S. Ansari</td>
</tr>
<tr>
<td>4E1 2</td>
<td>Project management</td>
<td>L(9)</td>
<td>Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr N. Oraiooulos</td>
</tr>
</tbody>
</table>

Group F: Information Engineering

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites Assumed</th>
<th>Prerequisites Useful</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4F1</td>
<td>Control system design</td>
<td>M(5)</td>
<td>Exam and Coursework</td>
<td>3F1, 3F2</td>
<td>Moodle</td>
<td>Dr I. Lestas</td>
<td></td>
</tr>
<tr>
<td>4F2</td>
<td>Robust and nonlinear control</td>
<td>L(7)</td>
<td>Coursework</td>
<td>3F2</td>
<td>Moodle</td>
<td>Prof R Sepulchre</td>
<td></td>
</tr>
<tr>
<td>4F3</td>
<td>An optimisation based approach to control</td>
<td>L(11)</td>
<td>Exam</td>
<td>3F1, 3F2</td>
<td>Moodle</td>
<td>Prof G Vinnicombe</td>
<td></td>
</tr>
<tr>
<td>4F5</td>
<td>Advanced information theory and coding</td>
<td>L(6)</td>
<td>Exam</td>
<td>3F7</td>
<td>Moodle</td>
<td>Prof J Sayir</td>
<td></td>
</tr>
<tr>
<td>4F7</td>
<td>Statistical signal analysis</td>
<td>M(4)</td>
<td>Exam</td>
<td>3F3</td>
<td>Moodle</td>
<td>Dr S. Sayegh</td>
<td></td>
</tr>
<tr>
<td>4F8</td>
<td>Image processing and image coding</td>
<td>L(3)</td>
<td>Exam</td>
<td>3F1, 3F7</td>
<td>Moodle</td>
<td>Prof J Lasenby</td>
<td></td>
</tr>
<tr>
<td>4F1 0</td>
<td>Deep learning and structured data</td>
<td>M(6)</td>
<td>Exam</td>
<td>3F1, 3F3, 3F8</td>
<td>Moodle</td>
<td>Prof M.J.F. Gales</td>
<td></td>
</tr>
<tr>
<td>4F1 2</td>
<td>Computer vision</td>
<td>M(2)</td>
<td>Exam</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr I Budvytis</td>
</tr>
<tr>
<td>4F1 3</td>
<td>Probabilistic Machine Learning</td>
<td>M(1)</td>
<td>Coursework</td>
<td>3F3</td>
<td></td>
<td>Machine learning lecture notes</td>
<td>Prof Z. Ghahramani</td>
</tr>
<tr>
<td>4F1 4</td>
<td>Computer Systems</td>
<td>L(5)</td>
<td>Exam and Coursework</td>
<td></td>
<td></td>
<td>Moodle</td>
<td>Dr A H Gee</td>
</tr>
</tbody>
</table>
Group G: Bioengineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4G3</td>
<td>Computational neuroscience</td>
<td>L(4)</td>
<td>Coursework</td>
<td>3G2, 3G3</td>
<td>Moodle</td>
<td>Prof M Lengyel</td>
</tr>
<tr>
<td>4G4</td>
<td>Biomimetics</td>
<td>L(2)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Dr F Iida</td>
</tr>
<tr>
<td>4G5</td>
<td>Materials and molecules: modelling, simulation and machine learning</td>
<td>M(6)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Dr G. Csanyi</td>
</tr>
</tbody>
</table>

Group I: Imported Modules

Note that these modules are all imported from other courses, and hence might be timetabled at unusual times and in unusual places, and have a different course structure to other IIB modules. Also, many of them have a cap on numbers. However, they do provide a tremendous opportunity to learn about a wider range of technology than the Engineering Tripos would otherwise provide.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4I1</td>
<td>Strategic valuation</td>
<td>M(v ac)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Dr H Jiang</td>
</tr>
<tr>
<td>4I8</td>
<td>Medical physics</td>
<td>L(8)</td>
<td>Exam</td>
<td>3G4</td>
<td>Moodle</td>
<td>Dr G Treece</td>
</tr>
<tr>
<td>4I10</td>
<td>Nuclear reactor engineering</td>
<td>M(5)</td>
<td>Exam</td>
<td>4M16</td>
<td>Moodle</td>
<td>Dr G.T. Parks</td>
</tr>
<tr>
<td>4I11</td>
<td>Advanced fission and fusion systems</td>
<td>L(8)</td>
<td>Coursework</td>
<td>4M16</td>
<td>Moodle</td>
<td>Dr G.T. Parks</td>
</tr>
<tr>
<td>4I14</td>
<td>Biosensors and Bioelectronics</td>
<td>L(6)</td>
<td>Coursework</td>
<td>3G3</td>
<td>Moodle</td>
<td>Prof G Malliar</td>
</tr>
<tr>
<td>4I15</td>
<td>Mobile robot systems</td>
<td>L(8)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Dr A Prorok</td>
</tr>
</tbody>
</table>

Group M: Multidisciplinary Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>Title (linked to syllabus)</th>
<th>Term (set)</th>
<th>Form of assessment</th>
<th>Prerequisites</th>
<th>On-line resources</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>4M1</td>
<td>French</td>
<td>L(10)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Mr D. Tual</td>
</tr>
<tr>
<td>4M2</td>
<td>German</td>
<td>L(10)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Mr A. Bleistein</td>
</tr>
<tr>
<td>4M3</td>
<td>Spanish</td>
<td>M(1 0)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Mr S. Bianchi</td>
</tr>
<tr>
<td>4M12</td>
<td>Partial differential equations and variational methods</td>
<td>L(1)</td>
<td>Exam</td>
<td></td>
<td>Moodle</td>
<td>Dr J.S. Biggins</td>
</tr>
<tr>
<td>4M16</td>
<td>Nuclear power engineering</td>
<td>L(1)</td>
<td>Exam</td>
<td></td>
<td>Moodle</td>
<td>Dr G.T. Parks</td>
</tr>
<tr>
<td>Module Code</td>
<td>Title (linked to syllabus)</td>
<td>Term (set)</td>
<td>Form of assessment</td>
<td>Prerequisites</td>
<td>On-line resources</td>
<td>Leader</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>4M17</td>
<td>Practical optimization</td>
<td>M(1 1)</td>
<td>Coursework</td>
<td>3M1</td>
<td>Moodle</td>
<td>Prof R Sepulchre</td>
</tr>
<tr>
<td>4M20</td>
<td>Robotics</td>
<td>M(1 2)</td>
<td>Coursework</td>
<td>3C5, 3C8, 3F2, 3F3</td>
<td>Moodle</td>
<td>Dr F Iida</td>
</tr>
<tr>
<td>4M21</td>
<td>Software engineering and design</td>
<td>L(7)</td>
<td>Exam</td>
<td></td>
<td>Moodle</td>
<td>Dr E. Punskaya</td>
</tr>
<tr>
<td>4M22</td>
<td>Climate change mitigation</td>
<td>M(1 1)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Prof J.M. Allwood</td>
</tr>
<tr>
<td>4M23</td>
<td>Electricity and environment</td>
<td>L(6)</td>
<td>Coursework</td>
<td></td>
<td>Moodle</td>
<td>Dr T Long</td>
</tr>
<tr>
<td>4M24</td>
<td>Computational statistics and machine learning</td>
<td>M(2)</td>
<td>Exam and coursework</td>
<td>3F3, 3F8, 3M1</td>
<td>Moodle</td>
<td>Prof M Girola</td>
</tr>
</tbody>
</table>

Source URL (modified on 20-05-21): http://teaching.eng.cam.ac.uk/content/part-iib-syllabuses-links-online-resources