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Corrections added in 2019

• Section 6.2: Added missing 1
2 in the formula of differential entropy of multivariate Gaussian.

• Section 7.1: Removed spurious dx in formula for entropy.

• Section 8.2: Edited the definition of pt in the density evolution equation.

Corrections added in 2021

• Section 6.2: Missing power of D restored to the formula for the pdf of a multivariate Gaussian
distribution.
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1 FOURIER TRANSFORMS

Waveform: Spectrum (ω = 2π f ) :

g(t) =
1

2π

∫
∞

−∞

G(ω)e jωtdω G(ω) =
∫

∞

−∞

g(t)e− jωtdt

1 DC level 2πδ (ω) = δ ( f )

u(t) unit step πδ (ω)+ 1
jω

e jω0t 2πδ (ω−ω0)

cos(ω0t) π[δ (ω−ω0)+δ (ω +ω0)]

sin(ω0t)
π

j
[δ (ω−ω0)−δ (ω +ω0)]

∞

∑
n=−∞

δ (t−nT ) impulse train
2π

T

∞

∑
m=−∞

δ

(
ω− 2πm

T

)

0

a

−b/2 b/2
-
t

rectangular pulse absinc
(

ωb
2

)
Note: sinc(x) = sin(x)

x

�
�
�
��B
B
B
BB0

a

−b b
-
t

triangular pulse absinc2
(

ωb
2

)

0

a

−b/2 b/2
-
t

half-cosine pulse
ab
2

[
sinc

(
ωb−π

2

)
+ sinc

(
ωb+π

2

)]

g(t− t0) time shift e− jωt0G(ω)

e jω0tg(t) G(ω−ω0) frequency shift

dng
dtn differentiation ( jω)nG(ω)

g1(t)∗g2(t) convolution G1(ω)G2(ω)

=
∫

∞

−∞

g1(t− τ)g2(τ)dτ

g1(t)g2(t) multiplication 1
2π

G1(ω)∗G2(ω) =

1
2π

∫
∞

−∞

G1(ω−Ω)G2(Ω)dΩ

Duality: If g(t) transforms to p(ω), then p(t) transforms to 2πg(−ω).
Symmetry: If g(t) is real, then G(−ω) = G∗(ω) (∗ means complex conjugate).

If g(t) is real and even, then G(ω) is real and even.
If g(t) is real and odd, then G(ω) is imaginary and odd.

Caution: Some books handle the 2π factor differently and define transforms with differences
in the sign of the exponent.

Parseval’s theorem of energy conservation:
∫

∞

−∞
|g(t)|2dt = 1

2π

∫
∞

−∞
|G(ω)|2dω
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2 DISCRETE FOURIER TRANSFORMS

The DFT of a sequence (xn, n = 0,1, . . . ,N−1) is defined by

Xk =
N−1

∑
n=0

xne−i2πkn/N for 0≤ k ≤ N−1

with inverse DFT

xn =
1
N

N−1

∑
k=0

Xkei2πkn/N for 0≤ n≤ N−1

Caution: Some books handle the
1
N

factor differently and define transforms with differences

in signs of the exponent.

If the sequence xn is obtained by regular sampling of a continuous function x(t) at times tn = n/ f0, where
f0 is the sampling frequency in Hz, the DFT gives a discrete approximation to the frequency spectrum of
the continuous function. The total sampling time is T = N/ f0, and the frequency spectrum will contain
frequencies equally spaced by a resolution 1/T Hz, from 0 Hz to the Nyquist frequency f0/2.



2017 version, corrections 2019 and 2021 3

3 Z-TRANSFORMS

Sequence: z Transform:

gk, k = 0,1,2, . . . G(z) =
∞

∑
k=0

gkz−k

1 (unit step)
1

1− z−1

kT
T z−1

(1− z−1)2

(k+m−1)!
k!(m−1)!

1
(1− z−1)m

e−akT 1
1− e−aT z−1

sin(ω0kT )
sin(ω0T )z−1

1−2cos(ω0T )z−1 + z−2

cos(ω0kT )
1− cos(ω0T )z−1

1−2cos(ω0T )z−1 + z−2

rk−1

sinω0T
[r sin(ω0(k+1)T )−asin(ω0kT )]

1−az−1

1−2r cos(ω0T )z−1 + r2z−2

rk[Acos(ω0kT )+Bsin(ω0kT )]
A+ rz−1(Bsin(ω0T )−Acos(ω0T ))

1−2r cos(ω0T )z−1 + r2z−2

rkgk G(r−1z)

gk+1 zG(z)− zg0

gk−1 z−1G(z)+g−1

gk+m zmG(z)− zmg0−·· ·− zgm−1

gk−m z−mG(z)+ z−(m−1)g−1 + · · ·+g−m

g0 = lim
z→∞

G(z) (initial value theorem)

lim
k→∞

gk = lim
z→1

(z−1)G(z) (final value theorem when poles of

(z−1)G(z) are inside unit circle)
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4 CONTROL

Part IB Paper 6: Information Engineering

LINEAR SYSTEMS AND CONTROL

Glenn Vinnicombe

HANDOUT 5

“An Introduction to Feedback Control Systems”

G(s)K(s)

H(s)

Σ
+r̄ (s) ē(s) ȳ(s)

z̄(s)

−

z̄(s) = H(s)G(s)K(s)︸ ︷︷ ︸
L(s)

Return ratio

ē(s)

ē(s) =
1

1+ L(s)︸ ︷︷ ︸
Closed-loop transfer function

relating ē(s) and r̄ (s)

r̄ (s)

ȳ(s) = G(s)K(s)ē(s) =
G(s)K(s)

1+ L(s)︸ ︷︷ ︸
Closed-loop transfer function

relating ȳ(s) and r̄ (s)

r̄ (s)

1

z̄(s) = H(s)G(s)K(s)ē(s) = L(s)ē(s)
where L(s) = H(s)G(s)K(s) is called the Return Ratio.

ȳ(s) =
G(s)K(s)

1+H(s)G(s)K(s)
r̄(s) =

G(s)K(s)
1+L(s)

r̄(s)

where G(s)K(s)
1+L(s) is the closed-loop transfer function relating y and r.

4.1 Stability of the Closed-loop System

The closed-loop system is stable if the roots of the characteristic equation, 1+L(s) = 0, have negative
real parts.

4.2 Routh-Hurwitz Stability Criteria

The roots of the polynomial ansn +an−1sn−1 + · · ·+a0, with a0 > 0, have negative real part:

for n = 2, if and only if all ai > 0;
for n = 3, if and only if all ai > 0 and a1a2 > a0a3;
for n = 4, if and only if all ai > 0 and a1a2a3 > a0a2

3 +a4a2
1 ;

(Further relationships exist for n > 4.)

For the following conditions it is convenient to write L(s) = k g(s), an explicit function of the gain k.

4.3 Nyquist Stability Criterion

For a stable closed-loop system, the full Nyquist plot of g(s), for s = jω and −∞ < ω < ∞, should
encircle the (−1

k , j0) point as many times as there are poles of g(s) (i.e. open-loop poles) in the right
half of the s-plane. The encirclements, for the path traced by increasing ω , are counted positive in a
counterclockwise direction.

4.4 Root Locus

The roots of 1+ kg(s) = 0, the closed loop poles, trace loci as k varies from 0 to ∞, starting at the
open-loop poles and ending at the open-loop zeros or at infinite distances.
All sections of the real axis with an odd number of poles and zeros to their right are sections of the root
locus (even number of poles and zeros to their right if k < 0).

At the breakaway points (coincident roots):
dg
ds

= 0.

Angle condition: ∠g(s) = (2m+1)π if k > 0 (∠g(s) = 2mπ if k < 0), where m is an integer.
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Magnitude condition: |g(s)|= 1
k

.

Asymptotes: If g(s) has P poles and Z zeros, the asymptotes of the loci as k→ ∞ are straight lines at
angles (2m+1)π

P−Z to the real axis if k > 0 ( 2mπ

P−Z if k < 0).
Their point of intersection σ with the real axis is given by:

σ =
∑(poles of g(s))−∑(zeros of g(s))

P−Z

4.5 Bode Diagrams

Bode diagram of (1+ sT ):
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Bode diagram of
1

1+2ζ sT + s2T 2 for ζ = 0.2,0.4,0.6,0.8,1.0:
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5 COMMUNICATION

5.1 Analogue Communication

• In amplitude modulation, the modulated signal s(t) is related to the information signal x(t) by

s(t) = [a0 + x(t)]cos(2π fct).

The modulation index is mA = Peak amplitude of x(t)
a0

.

• In frequency modulation, the modulated signal s(t) is related to the information signal x(t) by:

s(t) = a0 cos
[

2π fct +2πkF

∫ t

0
x(u)du

]
.

The frequency deviation is ∆ f = kF [maximum amplitude of x(t)].

If the information signal is x(t) = ax cos(2π fxt), then the modulation index is mF = ∆ f
fx
= kF ax

fx
.

• Carson’s rule for FM signals: If the information signal has bandwidth W and the frequency devia-
tion is ∆ f , then

Modulated signal bandwidth ≈ 2W +2∆ f

5.2 Digital Communication

• Quantisation: If a sinusoidal signal quantised with an n-bit quantiser, the signal-to-quantisation
noise ratio is

SNR = 1.76+6.02n dB.

• In baseband Pulse Amplitude Modulation (PAM), the modulated signal is

x(t) = ∑
k

Xk p(t− kT ),

where Xk are information symbols drawn from a real-valued constellation, p(t) is a unit-energy
baseband pulse waveform, and T is the symbol period.

• In Quadrature Amplitude Modulation (QAM), the modulated signal is

x(t) = ∑
k

Re
[
Xke j2π fct] p(t− kT )

= ∑
k
[Re[Xk]cos(2π fct)− Im[Xk]sin(2π fct)] p(t− kT )

= ∑
k
|Xk|cos(2π fct + arg(Xk))p(t− kT ).

where Xk are information symbols drawn from a constellation (that can be complex-valued), p(t)
is a unit-energy baseband pulse waveform, and T is the symbol period.

5.3 Wireless Communication

• Complex Gaussians: h ∼ CN(0,σ2) means that h is a complex random variable whose real and
imaginary parts are independent Gaussian random variables, each distributed as N(0, σ2

2 )

• If h∼CN(0,σ2), then the squared-magnitude |h|2 is exponentially distributed, i.e., if X = |h|2, the
pdf of X is

fX(x) =
1

σ2 exp
(
−x
σ2

)
, x≥ 0.
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• The Delay Spread Td of a multipath fading channel is the maximum difference between delays
of the paths from transmitter to receiver. The number of channel taps is d2WTde, where W is the
one-sided baseband bandwidth of the transmitted signal.

• If Td � 1
2W , the channel is said to have flat fading (no inter-symbol interference). If Td > 1

2W , the
fading channel has multiple taps and is said to be frequency selective.

• The coherence bandwidth of the channel is 1/(2Td). If the one-sided baseband bandwidth of the
transmitted signal is less than the coherence bandwidth, there will be only one channel tap, i.e.,
flat fading.
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6 PROBABILITY AND INFERENCE

6.1 Random variables

In the following, for a random variable X , p(x) denotes the probability mass function (pmf) if X is
discrete-valued, or the probability density function (pdf) if X is continuous-valued.

• Mean or Expected value: discrete: E[X ] = ∑x xp(x) and continuous: E[X ] =
∫

xp(x)dx.

• Variance: V[X ] = E[(X−E[X ])2] = E[X2]− (E[X ])2.

For jointly distributed random variables (X ,Y ), let p(x,y) denote the joint pmf if (X ,Y ) are discrete, or
the joint pdf if (X ,Y ) are jointly continuous.

• Conditional pmf/pdf definition: p(x|y) = p(x,y)
p(y) , p(y) 6= 0.

• The above definition directly gives rise to the product rule: p(x,y) = p(x|y)p(y) and to Bayes’
rule: p(x|y) = p(y|x)p(x)

p(y) .

• Sum rule for the discrete case: p(x) = ∑y p(x,y), and for the continuous case: p(x) =
∫

y p(x,y)dy.

• Covariance: V(X ,Y ) = E[(X−E[X ])(Y −E[Y ])] = E[XY ]−E[X ]E[Y ].

6.2 The multivariate Gaussian distribution

A D-dimensional Gaussian random vector X with mean vector µ and covariance matrix Σ has a joint pdf
given by

N(x;µ, Σ) =
1√

(2π)D|Σ|
exp
(
− 1

2(x−µ)>Σ
−1(x−µ)

)
.

Here µ is a D-dimensional vector, Σ is a D×D positive definite symmetric matrix, and |Σ| its determinant.

• If x and y are jointly Gaussian random vectors with joint pdf

p
([ x

y

])
= N

([
x
y

]
;
[

a
b

]
,

[
A C

C> B

])
,

then the conditional pdf: p(x|y) = N(x; a+CB−1(y−b), A−CB−1C>), and the marginal pdf:
p(x) = N(x; a, A).

• Linear projection: p(x) = N(x; µ, Σ) and y = Ax+b, then p(y) = N(y; Aµ+b, AΣA>).

• The product of Gaussian densities is an un-normalised Gaussian:

N(x; a, A)N(x; b, B) = Z−1N(x; c, C),

where C = (A−1 +B−1)−1, c = C(A−1a+B−1b), and the normalising constant is Gaussian in
both a and b: Z−1 = (2π)−D/2|A+B|−1/2 exp(−1

2(a−b)>(A+B)−1(a−b)).

• The (differential) entropy of a D-dimensional Gaussian random vector X with with pdf p(x) =
N(x;µ, Σ) is

h(X) =
∫

p(x) log
1

p(x)
dx =

1
2

log
(
(2πe)D|Σ|

)
.

• KL divergence between Gaussians: if p(x) = N(x;µ1,Σ1) and q(x) = N(x;µ2,Σ2), then

KL(p,q) =
∫

p(x) log
p(x)
q(x)

dx = 1
2

(
log
|Σ2|
|Σ1|
−D+ tr(Σ−1

2 Σ1) + (µ1−µ2)
>

Σ
−1
2 (µ1−µ2)

)
.
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7 INFORMATION THEORY

7.1 Entropy

• The entropy of a discrete random variable X with pmf P is

H(X) = ∑
x

P(x) log
1

P(x)
=−E [log(P(x))] .

The entropy is measured in bits if the log is with base 2, and in nats if the log is base e.

• The joint entropy of random variables X1, . . . ,Xn with joint pmf PX1...Xn is

H(X1,X2, . . . ,Xn) = ∑
x1,...,xn

PX1...Xn(x1, . . . ,xn) log
1

PX1...Xn(x1, . . . ,xn)
.

• The conditional entropy of Y given X is

H(Y |X) = ∑
x

PX(x)∑
y

PY |X(y|x) log
1

PY |X(y|x)︸ ︷︷ ︸
H(Y |X=x)

= ∑
x

PX(x)H(Y |X = x).

Note that a similar formula holds if we condition on a collection of random variables (X1, . . . ,Xn)
instead of a single random variable X .

• Chain rule for entropy: The joint entropy of X1, . . . ,Xn can be written as

H(X1,X2 . . . ,Xn) = H(X1)+H(X2|X1)+H(X3|X2,X1)+ . . .+H(Xn|Xn−1, . . . ,X1)

=
n

∑
i=1

H(Xi|Xi−1, . . . ,X1), where

H(Xi|Xi−1, . . . ,X1) =−∑x1,...,xi PX1,...,Xi(x1, . . . ,xi) logPXi|X1,...,Xi−1(xi|x1, . . . ,xi−1).

• The relative entropy or KL divergence between two pmfs P and Q (defined on the same alphabet)
is

D(P||Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

.

7.2 Mutual Information

• The mutual information between random variables X and Y with joint pmf PXY is

I(X ;Y ) = H(X)−H(X |Y )
= H(Y )−H(Y |X)

= H(X)+H(Y )−H(X ,Y )

= D(PXY ||PX PY ).

• Chain rule for mutual information:

I(X1,X2, . . . ,Xn;Y ) = I(X1;Y )+ I(X2;Y |X1)+ . . .+ I(Xn;Y |Xn−1, . . . ,X1)

=
n

∑
i=1

I(Xi;Y |Xi−1,Xi−2, . . . ,X1).
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7.3 Inequalities

• Data-processing inequality: If X ,Y,Z form a Markov chain, then I(X ;Y )≥ I(X ;Z).

Discrete random variables X ,Y,Z are said to form a Markov chain if their joint pmf can be written
as PXY Z = PX PY |X PZ|Y .

• Fano’s inequality: Let X be a random variable taking values in a set X with cardinality denoted
by |X |. Let Y be a random variable jointly distributed with X , and X̂ = f (Y ) be any estimator of
X from Y . Then the probability of error Pe = Pr(X̂ 6= X) satisfies

1+Pe log |X | ≥ H(X |Y ).

7.4 Differential entropy

The differential entropy of a continuous random variable X with pdf p is

h(X) =
∫

∞

−∞

p(x) log
1

p(x)
dx.

Joint differential entropy, conditional differential entropy, relative entropy/KL divergence, mutual infor-
mation, chain rules for continuous random variables are all defined similarly to the discrete case with
integrals replacing sums.
The formulas for the differential entropy and KL divergence for Gaussian random vectors are given in
Section 6 of this databook.
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8 CODING THEORY

8.1 Linear block codes

• A k-dimensional linear block code of codeword length n (an (n,k) linear code) has encoder matri-
ces of size k×n, parity-check matrices of size (n− k)×n, and rate R = k/n.

• An (n,k) linear block code has a systematic encoder matrix of the form G = [Ik,P], to which
corresponds a parity-check matrix of the form H = [−PT ,In−k].

• Singleton Bound: The minimum distance of any (n,k) block code satisfies dmin ≤ n− k+1, with
equality for Maximum Distance Separable (MDS) codes.

• A block code with minimum distance dmin is guaranteed to correct any pattern of up to b (dmin−1)
2 c

errors. It can recover up to dmin−1 erasures.

• The minimum distance dmin of a linear block code is the minimum Hamming weight of any non-
zero codeword. For binary codes, it is also the minimum number of columns of H that add up to
the all-zero vector.

8.2 Binary LDPC Codes and Message Passing Algorithms

• Degree polynomials from a node perspective: L(x) = ∑
dmax

v
i=1 Lixi, R(x) = ∑

dmax
c

i=1 Rixi.

• Degree polynomials from an edge perspective: λ (x) = ∑
dmax

v
i=1 λixi−1, ρ(x) = ∑

dmax
c

i=1 ρixi−1.

• Average degrees d̄v = L′(1) =
(∫ 1

0 λ (x)dx
)−1

and d̄c = R′(1) =
(∫ 1

0 ρ(x)dx
)−1

.

• Design rate of an LDPC code is

R = 1− d̄v

d̄c
= 1− L′(1)

R′(1)
= 1−

∫ 1
0 ρ(x)dx∫ 1
0 λ (x)dx

.

• Density evolution for binary erasure channels with erasure probability ε: The probability pt of a
variable-to-check message along a (randomly picked) edge remaining erased after t ≥ 1 steps of
message passing is

pt = ελ (1−ρ(1− pt−1)).

(Initialize with p0 = ε .)

• Log-likelihood ratios for j = 1, . . . ,n are L(y j) = ln P(y j|c j=0)
P(y j|c j=1) .

• Log-likelihood ratio for a binary-input AWGN channel with inputs {+1,−1} and noise variance
σ2, for an output value y is L(y) = 2

σ2 y.

• Log-likelihood ratio based decoding rules (for sum-product/ belief propagation algorithm), with a
check node denoted by i and a variable node by j: The variable-to check messages are

L ji = L(y j)+∑
i′\i

Li′ j.

and the check-to-variable messages are

Li j = 2tanh−1

[
∏
j′\ j

tanh
(

L j′i

2

)]
.

Here i′ \ i denotes all the check nodes i′ connected to j except i. The notation j′ \ j is similarly
defined.

• Min-sum simplified decoding rule for a check node:

sign(Li j) = ∏
j′\ j

sign(L j′i) and |Li j|= min
j′\ j

(|L j′i|).
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8.3 Finite Fields and Reed-Solomon Codes

• A Galois Field GF(q) for q = pm where p is any prime number consists of a multiplicative group
of order q−1 and an additive group of order q.

• The order of an element α in a group is the smallest power ` such that α` = 1, where 1 is the
neutral element of the group.

• Lagrange Theorem: The order of a subgroup (and thus the order of any element in a group) divides
the order of the group.

• The Discrete Fourier Transform (DFT) of a vector x = [x0, . . . ,xn−1] with elements over a finite
field F is defined by Xk = ∑

n−1
m=0 xmαmk, for k = 0, . . . ,(n− 1). Here α must be an element of

multiplicative order n in F .

• The inverse DFT is xm = 1
n? ∑

n−1
k=0 Xkα−mk, for m = 0, . . . ,(n−1). Here n? = ∑

n
j=1 1, where the sum

is taken in F .

• Blahut’s theorem: The linear complexity of the DFT of a sequence of length n equals the Hamming
weight of the sequence, provided the Hamming weight is less than n/2.

• Reed-Solomon code: An (n,k) linear code over GF(q) with a parity-check matrix H = [α i j] for
i = 0, . . . ,(n− k− 1), and j = 0, . . . ,(n− 1), where α is an element of multiplicative order n in
GF(q).

• A Reed-Solomon code has rate R= k/n, has minimum distance dmin = n−k+1 and hence satisfies
the singleton bound with equality, i.e., it is Maximum Distance Separable (MDS).




