Structures Data Book

2018 Edition

Cambridge University Engineering Department

Table of Contents

1. Physical properties of structural materials 1
2. Stress and strain 1
2.1. Notation for stress 1
2.2. Strain definition 1
2.3. Stress-strain relations for isotropic elastic solids 1
2.4. Complementary shear 2
2.5. Planar transformation equations for stress 2
2.6. Mohr's circle of stress 2
2.7. Planar transformation equations for strain 3
2.8. Mohr's circle of strain 3
2.9. Principal stresses in 3 dimensions 4
2.10. Yield criteria for isotropic solids 4
3. Stresses in thin-walled circular pressure vessels with closed ends 4
4. Beam behaviour 4
4.1. Databook sign convention 4
4.2. Compatibility 5
4.3. Equilibrium 5
4.4. Elastic bending formulae 5
4.5. Formulae for elastic analysis 6
4.6. Plastic bending 8
4.7. Torsion formulae 8
5. Euler buckling 10
6. Pin-jointed trusses - statical determinacy 10
7. Equation of virtual work 10
8. Cables 11
8.1. Flexible cable in frictional contact with a curved surface 11
8.2. Flexible cable between supports subjected to a uniformly distributed load 11
9. Soil mechanics 12
9.1. Definitions 12
9.2. Classification of particle sizes 12
9.3. Groundwater seepage 13
9.4. Stresses in soils 13
9.5. Undrained strength of soil: Cohesion hypothesis (Tresca) 14
9.6. Drained strength of soil: Friction hypothesis (Coulomb) 14
10. Design of reinforced concrete 15
10.1. Design Equations 15
10.2. Available steel types 16
10.3. Standard bar sizes and reinforcement areas per metre width 16
11. Typical properties and forms of structural materials 17
11.1. Mechanical properties of steel and aluminium 17
11.2. Mechanical properties of glass fibre reinforced plastic (GFRP) 17
11.3. Structural steel sections (hot-rolled) 18
11.4. Aluminium sections (extrusions) 26
11.5. Glass fibre reinforced plastic (GFRP) sections (pultrusions)* 28

1. Physical properties of structural materials

Representative values to be used in calculations (further details in Materials Data Book and Section 10)

		Steel	Aluminium Alloy	Concrete *	Softwood* along grain	Water	units
Young's modulus	E	210	70	30	9	-	GPa
Shear modulus	G	81	26	13	-	-	GPa
Bulk modulus	K	175	69	14	-	2.2	GPa
Poisson's ratio	v	0.30	0.33	0.15	-	-	
Thermal expansion	α	11	23	12	-	60	$\times 10^{-6} \mathrm{~K}^{-1}$
Density	ρ	7840	2700	2400	-	1000	$\mathrm{~kg} \mathrm{~m}^{-3}$

* Typical values

For isotropic solids,

$$
G=\frac{E}{2(1+v)} ; \quad K=\frac{E}{3(1-2 v)}
$$

2. Stress and strain

2.1. Notation for stress

$\sigma_{x x}$ is the normal stress on the x face acting in the x direction.
$\tau_{x y}$ is the shear stress on the x face acting in the y direction.
In this data book, with the exception of Section 9, tensile stresses are defined as positive.

2.2. Strain definition

$\varepsilon_{x x}$ is the normal strain in the x direction.
$\gamma_{x y}$ is the shear strain between the x and y faces.

$$
\varepsilon_{x x}=\frac{\partial u}{\partial x} ; \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \quad \text { etc. }
$$

where: u, v are the small displacement components with respect to rectangular co-ordinates x, y.

2.3. Stress-strain relations for isotropic elastic solids

$$
\begin{gathered}
\varepsilon_{x x}=\frac{1}{E}\left(\sigma_{x x}-v \sigma_{y y}-v \sigma_{z z}\right)+\alpha \Delta T \quad \text { etc. } \\
\gamma_{x y}=\frac{1}{G} \tau_{x y} \quad \text { etc. }
\end{gathered}
$$

where: ΔT is the temperature change.
For plane stress with the z face unstressed and $\Delta T=0$, the inverse relationship is

$$
\sigma_{x x}=\frac{E}{\left(1-v^{2}\right)}\left(\varepsilon_{x x}+v \varepsilon_{y y}\right) \quad \text { etc. }
$$

2.4. Complementary shear

From equilibrium of a small element,

$$
\tau_{x y}=\tau_{y x} \quad \text { etc. }
$$

From its definition,

$$
\gamma_{x y}=\gamma_{y x} \quad \text { etc. }
$$

2.5. Planar transformation equations for stress

From equilibrium of an elementary triangle,

$$
\begin{aligned}
& \sigma_{a a}=\sigma_{x x} \cos ^{2} \theta+\sigma_{y y} \sin ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta \\
& \tau_{a b}=-\sigma_{x x} \sin \theta \cos \theta+\sigma_{y y} \sin \theta \cos \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{aligned}
$$

2.6. Mohr's circle of stress

A plot of normal stress against shear stress on a face for varying θ gives a circle, provided a special sign convention is used:

For Mohr's circle, shear stress is plotted positive when it is clockwise

The stresses on perpendicular faces, $\left(\sigma_{x x},-\tau_{x y}\right)$ and $\left(\sigma_{y y}, \tau_{y x}\right)$, plot at the opposite ends of a diameter. If new faces are considered at angle θ (see Section 2.5), the stresses on the new faces can be obtained by rotating the diameter of Mohr's circle by 2θ in the same direction.

2.7. Planar transformation equations for strain

By geometry,

$$
\begin{aligned}
\varepsilon_{a a} & =\varepsilon_{x x} \cos ^{2} \theta+\varepsilon_{y y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta \\
\gamma_{a b} & =-2 \varepsilon_{x x} \sin \theta \cos \theta+2 \varepsilon_{y y} \sin \theta \cos \theta+\gamma_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{aligned}
$$

2.8. Mohr's circle of strain

A plot of normal strain against half shear strain for varying θ gives a circle, if the sign convention for shear strains is the same as for corresponding shear stresses:

The strains in perpendicular directions, $\left(\varepsilon_{x x},-\gamma_{x y} / 2\right)$ and $\left(\varepsilon_{y y}, \gamma_{y x} / 2\right)$, plot at the opposite ends of a diameter. If new faces are considered at angle θ (see Section 2.7), the strains in the new directions can be obtained by rotating the diameter of Mohr's circle by 2θ in the same direction.

2.9. Principal stresses in $\mathbf{3}$ dimensions

The principal stresses can be calculated as the eigenvalues of the stress matrix $\underline{\sigma}$, and the principal directions are the corresponding eigenvectors.

$$
\underline{\boldsymbol{\sigma}}=\left[\begin{array}{ccc}
\sigma_{x x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z z}
\end{array}\right]
$$

2.10. Yield criteria for isotropic solids

Tresca's hypothesis:

$$
\max \left[\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right]=Y
$$

Von Mises' hypothesis:

$$
\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}=2 Y^{2}
$$

where: $\quad Y$ is the current yield stress in simple tension $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the principal stresses.

3. Stresses in thin-walled circular pressure vessels with closed ends

$$
\sigma_{h}=\frac{p r}{t} ; \quad \sigma_{l}=\frac{p r}{2 t}
$$

where: p is the internal gauge pressure
r is the radius of the vessel
t is the wall thickness
$\sigma_{h} \quad$ is the hoop stress
σ_{l} is the longitudinal stress.

4. Beam behaviour

4.1. Databook sign convention

4.2. Compatibility

$$
\kappa=\frac{d \psi}{d s}=\frac{1}{R}
$$

where: κ is the curvature
$R \quad$ is the local radius of curvature
s is a distance along a beam
$\psi \quad$ is the angle turned by tangent to the curve.
For plane sections remaining plane

$$
\varepsilon=\kappa y
$$

where: ε is the strain due to the curvature
y is the distance from the centroidal axis.
For a beam that has small transverse deflections $v(x)$ from the x-axis

$$
\psi \approx-\frac{d v}{d x} ; \quad \kappa \approx-\frac{d^{2} v}{d x^{2}}
$$

4.3. Equilibrium

where: M is the bending moment
S is the transverse shear force
w is the transverse external load per unit length of beam.

4.4. Elastic bending formulae

4.4.1. Longitudinal stresses

$$
\begin{gathered}
\frac{\sigma}{y}=\frac{M}{I}=E \Delta \kappa ; \quad I=\int y^{2} d A \\
M=Z_{e} \sigma_{\max }
\end{gathered}
$$

For an initially straight beam:

$$
M=E I\left(-\frac{d^{2} v}{d x^{2}}\right)
$$

where: $y \quad$ is the distance from the centroidal axis
$\Delta \kappa \quad$ is change of curvature from an initially unstressed configuration
$Z_{e} \quad$ is the elastic section modulus
$\sigma_{\max }$ is the stress at the outermost fibre
$I \quad$ is the second moment of area about a principal axis through the centroid (see also Mechanics Data Book).

Values of I for simple shapes

Solid circular section

$I_{x x}=\frac{\pi r_{o}^{4}}{4}$

Thin-walled circular section

$I_{x x} \approx \pi r^{3} t$

Solid rectangle

$$
I_{x x}=\frac{b h^{3}}{12}
$$

4.4.2. Transverse shear

If a free body is formed by cutting out part of the cross-section of a beam,

$$
q=\frac{S}{I} \int_{A_{c}} y d A=\frac{S A_{c} \bar{y}}{I}
$$

where: is the total longitudinal shear force per unit longitudinal length of the beam (shear flow)
$A_{c} \quad$ is the area of the cut off portion of the cross-section
$A_{c} \bar{y}$ is the first moment of area of the cut off portion about the centroidal axis.
At the cut, the shear stress is, on average:

$$
\tau=\frac{q}{a}
$$

where: a is the length of the cut in the plane of the cross-section.

4.5. Formulae for elastic analysis

4.5.1. Deflections for statically determinate structures

$$
\frac{W l^{2}}{24 E I}=\frac{w l^{3}}{24 E I}
$$

$$
\theta=\frac{M l}{3 E I}
$$

4.5.2. Clamping moments for statically indeterminate structures

\boldsymbol{M}_{A}	\boldsymbol{M}_{B}
$\frac{W l}{8}$	$\frac{W l}{8}$

$\frac{W b^{2} a}{l^{2}}$
$\frac{W a^{2} b}{l^{2}}$

$\frac{W l}{12}=\frac{w l^{2}}{12}$
$\frac{W l}{12}=\frac{w l^{2}}{12}$

$\frac{6 E I \delta}{l^{2}} \quad \frac{6 E I \delta}{l^{2}}$

$\frac{2 E I \theta}{l}$
$\frac{4 E I \theta}{l}$
4.5.3. Bending moment values for selected statically indeterminate cases
$\boldsymbol{M}_{\boldsymbol{A}}$

$$
\frac{W l}{8}=\frac{w l^{2}}{8}
$$

$$
M_{B}
$$

$$
\frac{W l}{16}=\frac{w l^{2}}{16}
$$

4.5.4. Bending moments at mid-span for simply supported beams

4.6. Plastic bending

For an initially unstressed beam, first yield in bending

$$
M_{y}=Z_{e} \sigma_{y}
$$

where: M_{y} is the moment at first yield
Z_{e} is the elastic section modulus.

For a beam fully yielded in bending, carrying no axial load, the neutral axis is at the equal-area axis, and

$$
M_{p}=Z_{p} \sigma_{y} ; \quad Z_{p}=\int|y| d A
$$

where: M_{p} is the plastic moment
Z_{p} is the plastic section modulus.
For cross-sections that can be easily split into regions that are fully yielded in either tension or compression,

$$
Z_{p}=\sum A_{i}\left|y_{i}\right|
$$

where: A_{i} is the area of a region
y_{i} is the distance from the beam's equal-area axis to the centroid of the region.
Values of Z_{e} and Z_{p} for simple shapes

Solid circular section

$Z_{e}=\frac{\pi r_{o}^{3}}{4}$
$Z_{e} \approx \pi r^{2} t$
$Z_{p} \approx 4 r^{2} t$
$Z_{p}=\frac{4 r_{o}{ }^{3}}{3}$

Solid rectangle

$$
Z_{e}=\frac{b h^{2}}{6}
$$

$$
Z_{p}=\frac{b h^{2}}{4}
$$

4.7. Torsion formulae

4.7.1. Circular shafts

For an elastic shaft,

$$
\begin{gathered}
\frac{\tau}{r}=\frac{T}{J} ; \quad J=\int r^{2} d A \\
T=G J \phi
\end{gathered}
$$

where: T is the applied torque
$\phi \quad$ is the angle of twist per unit length
r is the radius
J is the polar second moment of area.

Values of J for simple circular shapes

Solid circular section Thick-walled circular section Thin-walled circular section

$$
J=\frac{\pi r_{o}{ }^{4}}{2}
$$

$$
J=\frac{\pi\left(r_{o}^{4}-r_{i}^{4}\right)}{2}
$$

$$
J \approx 2 \pi r^{3} t
$$

4.7.2. Thin walled tubes (i.e. closed sections) of arbitrary cross-section By equilibrium,

$$
q=\frac{T}{2 A_{e}}
$$

By kinematics,

$$
\phi=\frac{\oint \gamma d s}{2 A_{e}}
$$

For an elastic tube,

$$
T=G \frac{4 A_{e}^{2}}{\oint \frac{d s}{t}} \phi
$$

where: q is the shear flow $=\tau t$
A_{e} is the area enclosed by the cross-section.

4.7.3. Thin-walled open sections

$$
T=G \sum \frac{1}{3} b t^{3} \phi
$$

where: b is the length, and
t is the thickness of a region of the cross-section; $t \ll b$.

5. Euler buckling

For a perfect elastic pin-ended compression member (strut),

$$
P_{E}=\frac{\pi^{2} E I}{L^{2}}
$$

where: P_{E} is the Euler buckling load
$E I$ is the bending stiffness of the strut about the appropriate axis
$L \quad$ is the length of the strut

$$
\sigma_{E}=\frac{P_{E}}{A}=\frac{\pi^{2} E}{(L / k)^{2}}
$$

where: σ_{E} is the Euler buckling stress
A is the cross-sectional area of the strut
$k \quad$ is the radius of gyration $=\sqrt{I / A}$.

6. Pin-jointed trusses - statical determinacy

For a pin-jointed assembly (Maxwell's rule, modified):

$$
s-m=b+r-D j
$$

where: the pin jointed assembly is in D dimensions (2 or 3) with b bars and j joints
r is the number of restraints on joint displacement
$s \quad$ is the number of redundancies (states of self-stress)
m is the number of independent mechanisms (degrees of freedom).

7. Equation of virtual work

For a pin-jointed framework, for any system of external forces W at the joints in equilibrium with bar tensions P, and any system of joint displacements δ compatible with member extensions e,

equilibrium set
compatible set
For other kinds of structure the equation is similar: external virtual work equals internal virtual work, provided that all the relevant contributing terms are included.

On L.H.S.: force•displacement, and/or couple•rotation, or pressure•swept volume, etc.
On R.H.S.: tension extension, and/or bending moment curvature δs, and/or $\sigma \cdot \varepsilon \delta V$, or $\tau \cdot \gamma \delta V$, etc.

8. Cables

8.1. Flexible cable in frictional contact with a curved surface

$$
T_{2}=T_{1} e^{\mu \theta}
$$

where: $\quad T_{1}$ and T_{2} are the cable tensions on either side of the contact
μ is the coefficient of friction between the surface and the cable
θ is the angle subtended by the contact.

8.2. Flexible cable between supports subjected to a uniformly distributed

 load$T=w \sqrt{\left(\frac{L^{2}}{2 d}\right)^{2}+x^{2}} ; \quad s=\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \approx 2 L+\frac{4}{3} \frac{d^{2}}{L}$ for small d / L
where: T is the tension in the cable
w is the load per unit horizontal length
$2 L$ is the length between supports
d is the sag at midspan
x is the horizontal distance from the centre
$s \quad$ is the cable length.

9. Soil mechanics

9.1. Definitions

Specific Gravity of soil solids
Voids ratio:

Water content:

Degree of saturation:

Bulk unit weight of soil:

Dry unit weight of soil:

Unit weight of dry soil:

Buoyant unit weight of soil

Relative density
G_{s}
$e=\frac{V_{v}}{V_{s}} \quad$ Unit weight of water $\gamma_{w}=9.81 \mathrm{kN} \mathrm{m}^{-3}$ $w=\frac{W_{w}}{W_{s}}$ $S_{r}=\frac{V_{w}}{V_{v}}=w \frac{G_{S}}{e}$
$\gamma=\frac{W_{t}}{V_{t}}=\frac{\gamma_{w}\left(G_{s}+S_{r} e\right)}{(1+e)}$
$\gamma=\frac{W_{s}}{V_{t}}=\frac{\gamma_{w} G_{S}}{(1+e)}$
$\gamma=\frac{s}{V_{t}}=\frac{\gamma_{w}\left(G_{S}\right)}{(1+e)}$
$\gamma^{\prime}=\gamma-\gamma_{w}=\frac{\gamma_{w}\left(G_{S}-1\right)}{(1+e)}$
$I_{D}=\frac{\left(e_{\max }-e\right)}{\left(e_{\max }-e_{\min }\right)}$
where: $e_{\max }$ is the maximum voids ratio achievable in a quick tilt test, and
$e_{\min }$ is the minimum voids ratio achievable by vibratory compaction.

9.2. Classification of particle sizes

Clay smaller than 0.002 mm (two microns)
Silt between 0.002 and 0.06 mm
Sand between 0.06 and 2 mm

Gravel between 2 and 60 mm
Cobbles between 60 and 200 mm
Boulders larger than 200 mm
$D \quad$ equivalent diameter of soil particle
$D_{10}, D_{60} \quad$ particle size such that 10% (or 60%) by weight of a soil sample is composed of finer grains.

9.3. Groundwater seepage

porewater pressure u

$h=u / \gamma_{w}$
Potential
$\bar{h}=h+y$
Hydraulic gradient $\quad i=-\nabla \bar{h}$

Darcy's law for laminar flow:

$$
v=k i
$$

where: v is superficial seepage velocity
k is coefficient of permeability.
Typical values:
clays $\quad: k$ between 10^{-11} and $10^{-9} \mathrm{~m} \mathrm{~s}^{-1}$
1 micron $<D_{10}<10 \mathrm{~mm}: k$ approximately $0.01\left(D_{10} \text { in } \mathrm{mm}\right)^{2} \mathrm{~m} \mathrm{~s}^{-1}$
$D_{10}>10 \mathrm{~mm}:$ non-laminar flow.

9.4. Stresses in soils

9.4.1. Sign convention

The normal sign convention for soil mechanics is to denote compressive stresses as positive. Hence in Section 9.4 only, compressive stresses are positive quantities.

9.4.2. Principle of effective stress (saturated soil)

Total stress Effective stress Pore water components components pressure
$\sigma \quad=\quad \sigma^{\prime} \quad+$
u
$\tau \quad=$
τ^{\prime}
$+$
0
(The dash on the effective shear stress components is normally omitted).

9.4.3. Plane strain stresses in soil: Definitions

Mohr's circle of stress:
mobilised angle of shearing ϕ^{\prime}
mean effective stress
mobilised shear strength

$$
\begin{aligned}
& s^{\prime}=\left(\sigma_{1}^{\prime}+\sigma_{3}^{\prime}\right) / 2 \\
& t=\left(\sigma_{1}^{\prime}-\sigma_{3}^{\prime}\right) / 2=\left(\sigma_{1}-\sigma_{3}\right) / 2 \\
& \sin \phi^{\prime}=\frac{\mathrm{t}}{s^{\prime}}=\frac{\sigma_{1}-\sigma_{3}}{\sigma_{1}+\sigma_{3}}
\end{aligned}
$$

9.5. Undrained strength of soil: Cohesion hypothesis (Tresca)

Undrained behaviour is exhibited by clays in the short term.
In constant-volume tests on clay, failure occurs when t reaches $t_{\text {max }}=c_{u}$
where: c_{u} is the undrained shear strength, which depends primarily on the voids ratio e.
The active and passive total horizontal stresses (σ_{a} and σ_{p}) are related to the vertical total stress σ_{v} by

$$
\begin{aligned}
& \sigma_{a}=\sigma_{v}-2 c_{u} \\
& \sigma_{p}=\sigma_{v}+2 c_{u}
\end{aligned}
$$

9.6. Drained strength of soil: Friction hypothesis (Coulomb)

Drained behaviour is exhibited by sands in the short term and all soils in the longterm.

Earth pressure coefficient

$$
\begin{gathered}
K \\
\sigma_{h}^{\prime}=K \sigma_{v}^{\prime}
\end{gathered}
$$

Active pressure $\left(\sigma_{v}^{\prime}>\sigma_{h}^{\prime}\right)$

$$
K_{a}=\frac{1-\sin \phi^{\prime}}{1+\sin \phi^{\prime}}
$$

Passive pressure $\left(\sigma_{v}^{\prime}<\sigma_{h}^{\prime}\right)$
[Assuming principal stresses are vertical and horizontal]
Angle of shearing resistance:
At peak strength $\quad \phi^{\prime}{ }_{\text {max }}$
At large strain $\quad \phi^{\prime}$ crit \quad (at critical state)
In any shear test on soil, failure occurs when ϕ^{\prime} reaches $\phi^{\prime}{ }_{\max }$, and

$$
\phi_{\max }^{\prime}=\phi_{\text {crit }}^{\prime}+\phi_{\text {dilatang }}^{\prime}
$$

where: ϕ^{\prime} crit is the ultimate angle of shearing resistance of a random aggregate deforming at constant volume, and ϕ^{\prime} dilatancy $\rightarrow 0$ as $I_{D} \rightarrow 0$, or s^{\prime} becomes large.

Typical properties for a quartz sand;

$$
\phi_{c r i t}^{\prime}=33^{\circ} \quad, \quad \phi_{\max }^{\prime}=53^{\circ} \quad\left(I_{D}=1, s^{\prime}<150 \mathrm{kN} \mathrm{~m}^{-2}\right) .
$$

10. Design of reinforced concrete

Design compressive strength of concrete is based on the characteristic cylinder strength $f_{c k}$:

$$
f_{c d}=\alpha_{c c} \frac{f_{c k}}{1.5}
$$

$\alpha_{c c}=0.85$ for compression in flexure and axial loading and $\alpha_{c c}=1.0$ for other phenomena
Design tensile strength of steel is based on the characteristic tensile yield stress of steel $f_{y k}$:

$$
f_{y d}=\frac{f_{y k}}{1.15}
$$

10.1. Design Equations

At failure in bending, the stress in the concrete $=0.6 f_{c d}$ over the whole area of concrete in compression and the stress in the steel $=f_{y d}$.

Moment capacity of singly reinforced beam

$$
\begin{aligned}
& M=f_{y d} A_{s}\left(d-\frac{x}{2}\right) \\
& x=1.67 \frac{f_{y d}}{f_{c d}}\left(\frac{A_{s}}{b}\right) \quad(\leq 0.5 d \text { to avoid over reinforcement })
\end{aligned}
$$

Moment capacity of double reinforced beam (if compression reinforcement is yielding)

$$
M=0.6 f_{c d} b x\left(d-\frac{x}{2}\right)+A_{s}^{\prime} f_{y d}\left(d-d^{\prime}\right)
$$

Shear capacity of beams

Shear capacity of unreinforced webs:

Where:

$$
\begin{aligned}
V_{R d, c}= & \frac{0.18}{\gamma_{c}}\left(k\left(100 \rho_{l} f_{c k}\right)^{\frac{1}{3}}\right) b_{w} d \\
& \geq 0.035 k^{3 / 2} f_{c k}^{1 / 2} b_{w} d
\end{aligned}
$$

$$
k=1+\sqrt{200 / d} \leq 2.0 \quad[d \mathrm{in} \mathrm{~mm}]
$$

b_{w} is the width of the web and ρ_{l} is the reinforcement ratio of the anchored steel:

$$
\rho_{l}=A_{s} /\left(b_{w} d\right) \leq 0.02
$$

If this resistance is insufficient to carry the applied load, internal stirrups are required, designed (assuming a 45 degrees truss angle) according to:

$$
\left.\begin{array}{ll}
V_{s}=\frac{A_{s w} f_{y d}(0.9 d)}{1.15 s} & \text { where } A_{s w} \text { is the area of the stirrup legs } \\
\text { and } s \text { is the stirrup spacing }
\end{array}\right] \begin{array}{ll}
\\
V_{\max }=\frac{f_{c, \max }}{2}(0.9 b d) & \text { where } f_{c, \max }=0.4 f_{c k}\left(1-f_{c k} / 250\right)
\end{array}
$$

The shear resistance is controlled by the smaller of V_{s} or $V_{\max }$.

10.2. Available steel types

Deformed high yield steel	$f_{y k}=500 \mathrm{~N} \mathrm{~mm}^{-2}$
Plain mild steel	$f_{y k}=250 \mathrm{~N} \mathrm{~mm}^{-2}$

10.3. Standard bar sizes and reinforcement areas per metre width

Diameter (mm)	6	8	10	12	16	20	25	32	40
Area ($\mathbf{m m}^{\mathbf{2}}$)	28	50	78	113	201	314	491	804	1256

	Spacing of bars (mm)									
	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{1 7 5}$	$\mathbf{2 0 0}$	$\mathbf{2 2 5}$	$\mathbf{2 5 0}$	$\mathbf{2 7 5}$	$\mathbf{3 0 0}$
Bar Dia. (mm)										
$\mathbf{6}$	377	283	226	189	162	142	126	113	103	94.3
$\mathbf{8}$	671	503	402	335	287	252	224	201	183	168
$\mathbf{1 0}$	1050	785	628	523	449	393	349	314	285	262
$\mathbf{1 2}$	1510	1130	905	754	646	566	503	452	411	377
$\mathbf{1 6}$	2680	2010	1610	1340	1150	1010	894	804	731	670
$\mathbf{2 0}$	4190	3140	2510	2090	1800	1570	1400	1260	1140	1050
$\mathbf{2 5}$	6550	4910	3930	3270	2810	2450	2180	1960	1790	1640
$\mathbf{3 2}$	10700	8040	6430	5360	4600	4020	3570	3220	2920	2680
$\mathbf{4 0}$	16800	12600	10100	8380	7180	6280	5580	5030	4570	4190

[^0]
11. Typical properties and forms of structural materials

The following selection of mechanical properties and sections is for teaching purposes only. When designing any structure, reference should be made to the relevant British or European Standard.

11.1. Mechanical properties of steel and aluminium

	Structural Steel		Aluminium	
	Grade 43 $($ BS EN - S275)	Grade 50 (BS EN - S355)	Alloy $6082-\mathrm{T} 6$	Alloy $5251-\mathrm{H} 24$
Yield stress σ_{y} (MPa)	275^{*}	355^{*}	255^{*}	185^{*}
Typical form	Hot-rolled sections and plate	Extruded sections, plate	Plate, sheet	

* Typical values

11.2. Mechanical properties of glass fibre reinforced plastic (GFRP)

Properties of GFRP can vary widely. One particular example is as follows:

Glass fibre in Polyester Matrix								
Fibreforce Composites Ltd - Force 800-Mat/roving				$	$	Longitudinal Tensile Properties		In-plane Shear Modulus
:---:	:---:	:---:						
Modulus	Breaking Stress SPa $)$	Density $\sigma_{t}(\mathrm{MPa})$						
17.2	207	2.9						

11.3. Structural steel sections (hot-rolled)

Pages 14-21 are reproduced and adapted from Steelwork Design Guide to BS5950: Part 1: 1990 - Volume 1, Section Properties and Member Capacities (5th Edition), by kind permission of the Director, The Steel Construction Institute, Ascot, Berkshire.

Section Designation	$\begin{aligned} & \text { Mass } \\ & \text { Per } \\ & \text { Metre } \end{aligned}$	Depth Section	Width Of Section	Thickness		Second Moment Of Area		Radius Of Gyration		Elastic Modulus		Plastic Modulus		Torsional Constant	Area Of Section
				Web	Flange	$\begin{gathered} \text { Axis } \\ x-x \end{gathered}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\underset{x-x}{\text { Axis }}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{gathered} \text { Axis } \\ x-x \end{gathered}$	Axis y-y	$\begin{gathered} \text { Axis } \\ x-x \end{gathered}$	Axis $y-y$		
		$\underset{\mathrm{mm}}{\mathrm{D}}$	$\begin{gathered} B \\ \mathrm{~mm} \end{gathered}$	$\stackrel{t}{\mathbf{m m}}$	$\begin{gathered} T \\ \mathrm{~mm} \end{gathered}$			cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}	$\underset{\mathrm{cm}^{4}}{\mathrm{~J}}$	$\underset{\mathrm{cm}^{2}}{\mathrm{~A}}$
914×419×388	388.0	921.0	420.5	21.4	36.6	719600	45440	38.2	9.59	15630	2161	17670	3341	1734	494
$914 \times 419 \times 388$ $914 \times 419 \times 343$	343.3	911.8	418.5	19.4	32.0	625800	39160	37.8	9.46	13730	1871	15480	2890	1193	437
914×305×289	289.1	926.6	307.7	19.5	32.0	504200	15600	37.0	6.51	10880	1014	12570	1601	926	368
$914 \times 305 \times 253$	253.4	918.4	305.5	17.3	27.9	436300	13300	36.8	6.42	9501	871	10940	1371	626	323
$914 \times 305 \times 224$	224.2	910.4	304.1	15.9	23.9	376400	11240	36.3	6.27	8269	739	9535	1163	422	286
914x 305×201	200.9	903.0	303.3	15.1	20.2	325300	9423	35.7	6.07	7204	621	8351	98	29	256
$838 \times 292 \times 226$	226.5	850.9	293.8	16.1	26.8	339700	11360	34.3	6.27	7985	773	9155	1212	514	289
$838 \times 292 \times 194$	193.8	840.7	292.4	14.7	21.7	279200	9066	33.6	6.06	6641	620	7640	974	306	247
$838 \times 292 \times 176$	175.9	834.9	291.7	14.0	18.8	246000	7799	33.1	5.90	5893	535	6808	842	1	4
762x267×197	196.8	769.8	268.0	15.6	25.4	240000	8175	30.9	5.71	6234	610	7167	959	404	251
$762 \times 267 \times 173$	173.0	762.2	266.7	14.3	21.6	205300	6850	30.5	5.58	5387	514	6198	807	267	220
$762 \times 267 \times 147$	146.9	754.0	265.2	12.8	17.5	168500	5455	30.0	5.40	4470	411	5156	647	159	7
$762 \times 267 \times 134$	133.9	750.0	264.4	12.0	15.5	150700	4788	29.7	5.30	4018	36	46	570	9	171
$686 \times 254 \times 170$	170.2	692.9	255.8	14.5	23.7	170300	6630	28.0	5.53	4916	518	5631	811	308	217
$686 \times 254 \times 152$	152.4	687.5	254.5	13.2	21.0	150400	5784	27.8	5.46	4374	455	5000	710	220	194
$686 \times 254 \times 140$	140.1	683.5	253.7	12.4	19.0	136300	5183	27.6	5.39	3987	409	4558	38	9	78
$686 \times 254 \times 125$	125.2	677.9	253.0	11.7	16.2	118000	4383	27.2	5.24	3481	34	3994	54	116	159
$610 \times 305 \times 238$	238.1	635.8	311.4	18.4	31.4	209500	15840	26.3	7.23	6589	1017	7486	1574	785	303
$610 \times 305 \times 179$	179.0	620.2	307.1	14.1	23.6	153000	11410	25.9	7.07	4935	743	5547	1144	340	228
$610 \times 305 \times 149$	149.2	612.4	304.8	11.8	19.7	125900	9308	25.7	7.00	4111	611	4594	93	200	190
$610 \times 229 \times 140$	139.9	617.2	230.2	13.1	22.1	111800	4505	25.0	5.03	3622	391	4142	611	216	178
$610 \times 229 \times 125$	125.1	612.2	229.0	11.9	19.6	98610	3932	24.9	4.97	3221	343	3676	469	111	159
$610 \times 229 \times 113$	113.0	607.6	228.2	11.1	17.3	87320 75780	3434 2915	24.6 24.2	4.88	2874 2515	256	2881	400	77.0	129
$610 \times 229 \times 101$	101.2	602.6	227.6	10.5	14.8	75780	2915	24.2	4.75	2515	256	2881			
$533 \times 210 \times 122$	122.0	544.5	211.9	12.7	21.3	76040	3388	22.1	4.67	2793	320	3196	500	178	155 139
$533 \times 210 \times 109$	109.0	539.5	210.8	11.6	18.8	66820	2943	21.9	4.60	2477	279	2828	436 399	126	139
$533 \times 210 \times 101$	101.0	536.7	210.0	10.8	17.4	61520	2692	21.9	4.57	2292	25	2360	35	75.7	129
$533 \times 210 \times 92$	92.1	533.1	209.3	10.1	15.6	55230 47540	2389 2007	21.7 21.3	4.51	1800	192	2059	300	51.5	105
$533 \times 210 \times 82$	82.2	528.3	208.8	9.6	13.2	47540	2007	21.3	4.38	1800	192	2059	300	51.5	105
$457 \times 191 \times 98$	98.3	467.2	192.8	11.4	19.6	45730	2347	19.1	4.33	1957	243	2232	379 338	121	125
$457 \times 191 \times 89$	89.3	463.4	191.9	10.5	17.7	41020	2089	19.0	4.29	1770	218	2014	338	90.7	114
$457 \times 191 \times 82$	82.0	460.0	191.3	9.9	16.0	37050	1871	18.8	4.23	1611	19	16	272	51.8	104 94.6
$457 \times 191 \times 74$	74.3	457.0	190.4	9.0	14.5	33320 29380	1671 1452	18.8	4.20	1296	153	1471	237	37.1	85.5
$457 \times 191 \times 67$	67.1	453.4	189.9	8.5	12.7	29380	1452	18.5	4.12	1296	153	1471	237	37.1	85.5
$457 \times 152 \times 82$	82.1	465.8	155.3	10.5	18.9	36590	1185	18.7	3.37	1571	153	1811	240	89.2	105
$457 \times 152 \times 74$	74.2	462.0	154.4	9.6	17.0	32670	1047	18.6	3.33	1414	136	1627	213	65.9	94.5
$457 \times 152 \times 67$	67.2	458.0	153.8	9.0	15.0	28930	913	18.4	3.27 3.23	1263	119	1287	163	33.8	85.6
$457 \times 152 \times 60$	59.8	454.6	152.9	8.1	13.3	25500 21370	795 645	18.3 17.9	3.23 3.11	1122 950	84.6	1096	133	21.4	66.6
457×152×52	52.3	449.8	152.4	7.6	10.9	21370	645	17.9							

Note: In the Section Tables in 10.3 and 10.4, the torsional constant J is defined by the equation $J=T /(G \phi)$ and will not be the polar second moment of area (unless the cross-section is circular).

UNIVERSAL BEAMS

Section Designation	Mass Per Metre kg/m	Depth Of Section D mm	Width Of Section B mm	Thickness		Second Moment Of Area		Radius Of Gyration		Elastic Modulus		Plastic Modulus		Torsional Constant$\underset{\mathrm{cm}^{4}}{\mathrm{~J}}$	Area Of Section$\underset{\mathrm{cm}^{2}}{\mathrm{~A}}$
				Web	Flange	$\underset{x-x}{\text { Axis }}$	$\begin{gathered} \text { Axis } \\ y-y \end{gathered}$	Axis $x-x$	Axis $y-y$	Axis $x-x$	Axis $y-y$	Axis $x-x$	$\begin{gathered} \text { Axis } \\ y-y \end{gathered}$		
				$\begin{gathered} \mathbf{t} \\ \mathbf{m m} \end{gathered}$	$\begin{gathered} T \\ \mathrm{~mm} \end{gathered}$	cm ${ }^{4}$	cm^{4}	cm	cm	cm^{3}	cm^{3}	cm^{3}	cm^{3}		
$406 \times 178 \times 74$	74.2	412.8	179.5	9.5	16.0	27310	1545	17.0	4.04	1323	172	1501	267	62.8	94.5
$406 \times 178 \times 67$	67.1	409.4	178.8	8.8	14.3	24330	1365	16.9	3.99	1189	153	1346	237	46.1	85.5
$406 \times 178 \times 60$	60.1	406.4	177.9	7.9	12.8	21600	1203	16.8	3.97	1063	135	1199	209	33.3	76.5
$406 \times 178 \times 54$	54.1	402.6	177.7	7.7	10.9	18720	1021	16.5	3.85	930	115	1055	178	23.1	69.0
$406 \times 140 \times 46$	46.0	403.2	142.2	6.8	11.2	15690	538	16.4	3.03	778	75.7	888	118	19.0	58.6
$406 \times 140 \times 39$	39.0	398.0	141.8	6.4	8.6	12510	410	15.9	2.87	629	57.8	724	90.8	10.7	49.7
$356 \times 171 \times 67$	67.1	363.4	173.2	9.1	15.7	19460	1362	15.1	3.99	1071	157	1211	243	55.7	85.5
$356 \times 171 \times 57$	57.0	358.0	172.2	8.1	13.0	16040	1108	14.9	3.91	896	129	1010	199	33.4	72.6
$356 \times 171 \times 51$	51.0	355.0	171.5	7.4	11.5	14140	968	14.8	3.86	796	113	896	174	23.8	64.9
$356 \times 171 \times 45$	45.0	351.4	171.1	7.0	9.7	12070	811	14.5	3.76	687	94.8	775	147	15.8	57.3
356x127x39	39.1	353.4	126.0	6.6	10.7	10170	358	14.3	2.68	576	56.8	659	89.1	15.1	49.8
$356 \times 127 \times 33$	33.1	349.0	125.4	6.0	8.5	8249	280	14.0	2.58	473	44.7	543	70.3	8.79	42.1
$305 \times 165 \times 54$	54.0	310.4	166.9	7.9	13.7	11700	1063	13.0	3.93	754	127	846	196	34.8	68.8
$305 \times 165 \times 46$	46.1	306.6	165.7	6.7	11.8	9899	896	13.0	3.90	646	108	720	166	22.2	58.7
$305 \times 165 \times 40$	40.3	303.4	165.0	6.0	10.2	8503	764	12.9	3.86	560	92.6	623	142	14.7	51.3
305×127×48	48.1	311.0	125.3	9.0	14.0	9575	461	12.5	2.74	616	73.6	711	116	31.8	61.2
$305 \times 127 \times 42$	41.9	307.2	124.3	8.0	12.1	8196	389	12.4	2.70	534	62.6	614	98.4	21.1	53.4
$305 \times 127 \times 37$	37.0	304.4	123.4	7.1	10.7	7171	336	12.3	2.67	471	54.5	539	85.4	14.8	47.2
305x102x33	32.8	312.7	102.4	6.6	10.8	6501	194	12.5	2.15	416	37.9	481	60.0	12.2	41.8
$305 \times 102 \times 28$	28.2	308.7	101.8	6.0	8.8	5366	155	12.2	2.08	348	30.5	403	48.5	7.40 4.77	31.8 31.6
$305 \times 102 \times 25$	24.8	305.1	101.6	5.8	7.0	4455	123	11.9	1.97	292	24.2	342	38.8	4.77	31.6
$254 \times 146 \times 43$	43.0	259.6	147.3	7.2	12.7	6544	677	10.9	3.52	504	92.0	566	141	23.9	54.8
$254 \times 146 \times 37$	37.0	256.0	146.4	6.3	10.9	5537	571	10.8	3.48	433	78.0	483	119	15.3	47.2
254×146x31	31.1	251.4	146.1	6.0	8.6	4413	448	10.5	3.36	351	61.3	393	94.1	8.55	39.7
254×102×28	28.3	260.4	102.2	6.3	10.0	4005	179	10.5	2.22	308	34.9	353	54.8	9.57	36.1
$254 \times 102 \times 25$	25.2	257.2	101.9	6.0	8.4	3415	149	10.3	2.15	266	29.2	306	46.0	6.42	32.0
254×102×22	22.0	254.0	101.6	5.7	6.8	2841	119	10.1	2.06	224	23.5	259	37.3	4.15	28.0
$203 \times 133 \times 30$	30.0	206.8	133.9	6.4	9.6	2896	385	8.71	3.17	280	57.5	314	88.2	10.3	38.2
$203 \times 133 \times 25$	25.1	203.2	133.2	5.7	7.8	2340	308	8.56	3.10	230	46.2	258	70.9	5.96	32.0
$203 \times 102 \times 23$	23.1	203.2	101.8	5.4	9.3	2105	164	8.46	2.36	207	32.2	234	49.8	7.02	29.4
$178 \times 102 \times 19$	19.0	177.8	101.2	4.8	7.9	1356	137	7.48	2.37	153	27.0	171	41.6	4.41	24.3
152x89x16	16.0	152.4	88.7	4.5	7.7	834	89.8	6.41	2.10	109	20.2	123	31.2	3.56	20.3
127×76x13	13.0	127.0	76.0	4.0	7.6	473	55.7	5.35	1.84	74.6	14.7	84.2	22.6	2.85	16.5

Section Designation	Mass Per Metre	Depth Of Section	Width Of Section	Thickness		Second Moment Of Area		Radius Of Gyration		Elastic Modulus		Plastic Modulus		Torsional Constant	Area Of Section
				Web	Flange	$\underset{x-x}{\text { Axis }}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\underset{x-x}{\text { Axis }}$	$\begin{aligned} & \text { Axis } \\ & y-y \end{aligned}$	$\begin{aligned} & \text { Axis } \\ & x-x \end{aligned}$	$\begin{gathered} \text { Axis } \\ y-y \end{gathered}$	Axis $x-x$	Axis $y-y$		
		$\underset{\mathrm{mm}}{\mathrm{D}}$	$\underset{\mathrm{mm}}{\mathbf{B}}$	$\begin{gathered} \mathbf{t} \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \mathrm{~mm} \end{gathered}$	cm^{4}				cm^{3}	cm^{3}	cm^{3}	cm^{3}	$\underset{\mathrm{cm}^{4}}{\mathrm{~J}}$	$\underset{\mathrm{cm}^{2}}{\mathrm{~A}}$
	633.9	474.6	424.0	47.6	77.0	274800	98130	18.4	11.0	11580	4629	14240	7108	13720	808
$356 \times 406 \times 634$ $356 \times 406 \times 551$	633.9 551.0	474.6 455.6	424.0 418.5	47.6	67.5	226900	82670	18.0	10.9	9962	3951	12080	6058	9240	702
$356 \times 406 \times 551$ $356 \times 406 \times 467$	467.0	436.6	418.5 412.2	42.1 35.8	58.0	183000	67830	17.5	10.7	8383	3291	10000	5034	5809	595
$356 \times 406 \times 467$ $356 \times 406 \times 393$	393.0	419.0	407.0	30.6	49.2	146600	55370	17.1	10.5	6998	2721	8222	4154	3545	501
$356 \times 406 \times 340$	339.9	406.4	403.0	26.6	42.9	122500	46850	16.8	10.4	6031	2325	6999	4	234	3
$356 \times 406 \times 287$	287.1	393.6	399.0	22.6	36.5	99880	38680	16.5	10.3	5075	1939	12	949	144	6
$356 \times 406 \times 235$	235.1	381.0	394.8	18.4	30.2	79080	30990	16.3	10.2	4151	70	4687	3	812	299
$356 \times 368 \times 202$	201.9	374.6	374.7	16.5	27.0	66260	23690	16.1	9.60	3538	1264	3972	1920	558	257
$356 \times 368 \times 177$	177.0	374.6 368.2	372.6	14.4	23.8	57120	20530	15.9	9.54	3103	1102	3455	1671	381	226
$356 \times 368 \times 153$	152.9	362.0	370.5	12.3	20.7	48590	17550	15.8	9.49	2684	948	2965	1435	251	5
$356 \times 368 \times 129$	129.0	355.6	368.6	10.4	17.5	40250	14610	15.6	9.43	2264	793	2479	9	153	4
$305 \times 305 \times 283$	282.9	365.3	322.2	26.8	44.1	78870	24630	14.8	8.27	4318	1529	5105	2342	2034	360
$305 \times 305 \times 240$	240.0	352.5	318.4	23.0	37.7	64200	20310	14.5	8.15	3643	1276	4247	1951	1271	306
$305 \times 305 \times 198$	198.1	339.9	314.5	19.1	31.4	50900	16300	14.2	8.04	2995	1037	3440	1581	734	252
$305 \times 305 \times 158$	158.1	327.1	311.2	15.8	25.0	38750	12570	13.9	7.90	2369	808	268	1053	49	174
$305 \times 305 \times 137$	136.9	320.5	309.2	13.8	21.7	32810	10700	13.7	7.83	2048	692	2		16	150
$305 \times 305 \times 118$	117.9	314.5	307.4	12.0	18.7	27670	9059	13.6	7.77 7.69	1760	479	1592	726	91.2	123
$305 \times 305 \times 97$	96.9	307.9	305.3	9.9	15.4	22250	7308	13.4	7.69	1445	479	1592	726	91.2	
254×254x167	167.1	289.1	265.2	19.2	31.7	30000	9870	11.9	6.81	2075	744	2424	1137 878	626	213
254×254×132	132.0	276.3	261.3	15.3	25.3	22530	7531	11.6	6.69	1631	576	1869	878	319	168
$254 \times 254 \times 107$	107.1	266.7	258.8	12.8	20.5	17510	5928	11.3	6.59	1313	458	1484	697	172	136
254×254×89	88.9	260.3	256.3	10.3	17.3	14270	4857	11.2	6.55	1096	379	1224	575	102	113 93.1
254×254×73	73.1	254.1	254.6	8.6	14.2	11410	3908	11.1	6.48	898	307	992	465	57.6	93.1
$203 \times 203 \times 86$	86.1	222.2	209.1	12.7	20.5	9449	3127	9.28	5.34	850	299	977	456	137	110
$203 \times 203 \times 71$	71.0	215.8	206.4	10.0	17.3	7618	2537	9.18	5.30	706	246	799	374	80.2	90.4
$203 \times 203 \times 60$	60.0	209.6	205.8	9.4	14.2	6125	2065	8.96	5.20	584	201	656	305	47.2 31.8	66.4
$203 \times 203 \times 52$	52.0	206.2	204.3	7.9	12.5	5259	1778	8.91	5.18 5.13	510 450	174 152	567 497	264	31.8 22.2	58.7
$203 \times 203 \times 46$	46.1	203.2	203.6	7.2	11.0	4568	1548	8.82	5.13	450	152	497	231		
152×152×37	37.0	161.8	154.4	8.0	11.5	2210	706	6.85	3.87	273	91.5	309	140	19.2	47.1
$152 \times 152 \times 30$	30.0	157.6	152.9	6.5	9.4	1748	560	6.76	3.83	222	73.3	248	112	10.5	38.3 29.2
$152 \times 152 \times 23$	23.0	152.4	152.2	5.8	6.8	1250	400	6.54	3.70	164	52.6	182	80.2	4.63	29.2

Designation		Depth Of Section D mm	Width Of Section B mm	Thickness		Second Moment Of Area		Radius Of Gyration		Elastic Modulus		Plastic Modulus		Torsional Constant$\underset{\mathrm{cm}}{ }{ }^{\mathrm{J}}$	Area of Section$\underset{\mathrm{cm}^{2}}{\mathrm{~A}}$		
Nominal	Mass			Web$\begin{gathered} \mathrm{t} \\ \mathrm{~mm} \end{gathered}$	Flange T mm												
Size mm	Per Metre kg					$\begin{gathered} \hline \text { Axis } \\ \mathrm{x}-\mathrm{x} \\ \mathrm{~cm}^{4} \\ \hline \end{gathered}$	Axis $y-y$ cm^{4}			Axis x-x cm	$\begin{aligned} & \text { Axis } \\ & y-y \\ & c m \end{aligned}$	$\begin{gathered} \text { Axis } \\ x-x \\ \mathrm{~cm}^{3} \end{gathered}$	$\begin{aligned} & \text { Axis } \\ & y-y \\ & \mathrm{~cm}^{3} \end{aligned}$			$\begin{aligned} & \text { Axis } \\ & x-x \\ & \mathrm{~cm}^{3} \end{aligned}$	Axis $y-y_{3}$ cm^{3}
432×102	65.54	431.8	101.6	12.2	16.8	21370	627	16.0	2.74	990	79.9	1205	153	61.5	83.4		
381x102	55.10	381.0	101.6	10.4	16.3	14870	579	14.6	2.87	781	75.7	931	144	46.4	70.1		
305×102	46.18	304.8	101.6	10.2	14.8	8208	499	11.8	2.91	539	66.5	638	128	35.9	58.9		
305x89	41.69	304.8	88.9	10.2	13.7	7078	326	11.5	2.47	464	48.6	559	92.9	28.1	53.3		
254x89	35.74	254.0	88.9	9.1	13.6	4445	302	9.89	2.58	350	46.7	414	89.6	23.2	45.4		
254x76	28.29	254.0	76.2	8.1	10.9	3355	162	9.67	2.12	264	28.1	316	53.9	12.3	35.9		
229x89	32.76	228.6	88.9	8.6	13.3	3383	285	9.01	2.61	296	44.8	348	86.3	20.6	41.6		
229x76	26.06	228.6	76.2	7.6	11.2	2615	159	8.87	2.19	229	28.3	271	54.5	11.6	33.2		
203x89	29.78	203.2	88.9	8.1	12.9	2492	265	8.11	2.64	245	42.4	287	81.7	18.1	37.9		
203x76	23.82	203.2	76.2	7.1	11.2	1955	152	8.02	2.24	192	27.7	226	53.5	10.6	30.4		
178x89	26.81	177.8	88.9	7.6	12.3	1753	241	7.17	2.66	197	39.3	230	75.4	15.3	34.1		
178x76	20.84	177.8	76.2	6.6	10.3	1338	134	7.10	2.25	151	24.8	176	48.1	8.26	26.6		
152x89	23.84	152.4	88.9	7.1	11.6	1168	216	6.20	2.66	153	35.8	178	68.3	12.7	30.4		
152x76	17.88	152.4	76.2	6.4	9.0	852	114	6.11	2.23	112	21.0	130	41.2	6.05	22.8		
127x64	14.90	127.0	63.5	6.4	9.2	482	67.2	5.04	1.88	76.0	15.2	89.4	29.3	5.00	19.0		
102×51	10.42	101.6	50.8	6.1	7.6	207	29.0	3.95	1.48	40.8	8.14	48.7	15.7	2.58	13.3		
76x38	6.70	76.2	38.1	5.1	6.8	74.3	10.7	2.95	1.12	19.5	4.09	23.5	7.78	1.26	8.56		

EQUAL ANGLES

DIMENSIONS AND PROPERTIES

Designation		Mass Per Metre kg	Radius		Area Of Section cm^{2}	Distance Of Centre Of Gravity cx and cy cm	Second Moment Of Area			Radius Of Gyration			Elastic Modulus Axis $x-x, y-y$ cm^{3}
Size A A mm	Thickness t mm		$\begin{gathered} \text { Root } \\ \mathrm{r} 1 \\ \mathrm{~mm} \end{gathered}$	Toe r 2 mm			$\begin{gathered} \text { Axis } \\ x-x, y-y \\ \mathrm{~cm}^{4} \end{gathered}$	$\begin{aligned} & \text { Axis } \\ & \mathrm{u}-\mathrm{u} \\ & \mathrm{~cm}^{4} \end{aligned}$	Axis v-v cm^{4}	$\begin{aligned} & \text { Axis } \\ & x-x, y-y \\ & \mathrm{~cm} \end{aligned}$	Axis u-u cm	Axis $\mathrm{v}-\mathrm{v}$ cm	
250×250	35	128	20.0	4.8	164	7.51	9305	14720	3886	7.54	9.49	4.88	532
	32	118	20.0	4.8	151	7.40	8650	13710	3592	7.58	9.54	4.89	491
	28	104	20.0	4.8	133	7.25	7741	12290	3194	7.63	9.61	4.90	436
	25	93.6	20.0	4.8	120	7.14	7030	11170	2890	7.67	9.67	4.92	394
200×200	24	71.1	18.0	4.8	90.8	5.85	3356	5322	1391	6.08	7.65	3.91	237
	20	59.9	18.0	4.8	76.6	5.70	2877	4569	1185	6.13	7.72	3.93	201
	18	54.2	18.0	4.8	69.4	5.62	2627	4174	1080	6.15	7.76	3.95	183
	16	48.5	18.0	4.8	62.0	5.54	2369	3765	973	6.18	7.79	3.96	164
150x150	18	40.1	16.0	4.8	51.2	4.38	1060	1680	440	4.55	5.73	2.93	99.8
	15	33.8	16.0	4.8	43.2	4.26	909	1442	375	4.59	5.78	2.95	84.6
	12	27.3	16.0	4.8	35.0	4.14	748	1187	308	4.62	5.82	2.97	68.9
	10	23.0	16.0	4.8	29.5	4.06	635	1008	262	4.64	5.85	2.99	58.0
120x120	15	26.6	13.0	4.8	34.0	3.52	448	710	186	3.63	4.57	2.34	52.8
	12	21.6	13.0	4.8	27.6	3.41	371	589	153	3.66	4.62	2.35	43.1
	10	18.2	13.0	4.8	23.3	3.32	316	502	130	3.69	4.65	2.37	36.4
	8	14.7	13.0	4.8	18.8	3.24	259	411	107	3.71	4.67	2.38	29.5
100×100	15	21.9	12.0	4.8	28.0	3.02	250	395	105	2.99	3.76	1.94	35.8
	12	17.8	12.0	4.8	22.8	2.91	208	330	86.5	3.02	3.81	1.95	29.4
	10+	15.0	12.0	4.8	19.2	2.83	178	283	73.7	3.05	3.84	1.96	24.8
	8	12.2	12.0	4.8	15.6	2.75	146	232	60.5	3.07	3.86	1.97	20.2
90×90	12	15.9	11.0	4.8	20.3	2.66	149	235	62.0	2.70	3.40	1.75	23.5
	10	13.4	11.0	4.8	17.2	2.58	128	202	52.9	2.73	3.43	1.76	19.9
	8	10.9	11.0	4.8	13.9	2.50	105	167	43.4	2.75	3.46	1.77	16.2
	7	9.61	11.0	4.8	12.3	2.46	93.2	148	38.6	2.76	3.47	1.77	14.3
	6	8.30	11.0	4.8	10.6	2.41	81.0	128	33.6	2.76	3.48	1.78	12.3
80x80	10	11.9	10.0	4.8	15.1	2.34	87.6	139	36.4	2.41	3.03	1.55	15.5
	8	9.63	10.0	4.8	12.3	2.26	72.4	115	29.9	2.43	3.06	1.56	12.6
	6	7.34	10.0	4.8	9.36	2.17	56.0	88.7	23.2	2.45	3.08	1.57	9.60
70x70	10	10.3	9.0	2.4	13.1	2.10	58.0	91.6	24.4	2.10	2.64	1.36	11.8
	8	8.36	9.0	2.4	10.7	2.02	48.3	76.5	20.1	2.12	2.67	1.37	9.70
	6	6.38	9.0	2.4	8.19	1.94	37.7	59.8	15.6	2.15	2.70	1.38	7.45
60x60	10	8.69	8.0	2.4	11.1	1.85	35.3	55.6	15.0	1.78	2.24	1.16	8.51
	8	7.09	8.0	2.4	9.07	1.78	29.6	46.7	12.4	1.80	2.27	1.17	7.00
	6	5.42	8.0	2.4	6.95	1.70	23.2	36.8	9.64	1.83	2.30	1.18	5.39
	5	4.57	8.0	2.4	5.86	1.65	19.8	31.4	8.23	1.84	2.31	1.18	4.56
50x50	8	5.82	7.0	2.4	7.44	1.53	16.5	25.9	6.96	1.49	1.87	0.968	4.74
	6	4.47	7.0	2.4	5.72	1.45	13.0	20.6	5.43	1.51	1.90	0.974	3.67
	5	3.77	7.0	2.4	4.83	1.41	11.1	17.7	4.63	1.52	1.91	0.979	3.11
	4	3.06	7.0	2.4	3.92	1.37	9.16	14.5	3.82	1.53	1.92	0.987	2.52
	3	2.33	7.0	2.4	2.99	1.32	7.06	11.1	2.97	1.54	1.93	0.996	1.92
45×45	6	4.00	7.0	2.4	5.12	1.33	9.30	14.7	3.90	1.35	1.69	0.872	2.93
	5	3.38	7.0	2.4	4.33	1.29	7.99	12.6	3.33	1.36	1.71	0.877	2.49
	4	2.74	7.0	2.4	3.52	1.24	6.58	10.4	2.75	1.37	1.72	0.883	2.02
	3	2.09	7.0	2.4	2.69	1.20	5.08	8.03	2.14	1.37	1.73	0.892	1.54
40×40	6	3.52	6.0	2.4	4.49	1.20	6.37	10.1	2.68	1.19	1.50	0.773	2.28
	5	2.97	6.0	2.4	3.80	1.17	5.48	8.68	2.29	1.20	1.51	0.776	1.93
	4	2.42	6.0	2.4	3.09	1.12	4.53	7.18	1.89	1.21	1.52	0.781	1.58
	3	1.84	6.0	2.4	2.36	1.08	3.51	5.55	1.47	1.22	1.53	0.788	1.20
30x30	5	2.18	5.0	2.4	2.78	0.919	2.17	3.42	0.919	0.883	1.11	0.575	1.04
	4	1.78	5.0	2.4	2.27	0.879	1.81	2.86	0.756	0.893	1.12	0.577	0.852
	3	1.36	5.0	2.4	1.74	0.836	1.41	2.23	0.588	0.900	1.13	0.581	0.652
25×25	5	1.77	3.5	2.4	2.25	0.796	1.19	1.87	0.515	0.728	0.912	0.478	0.701
	4	1.45	3.5	2.4	1.84	0.758	1.00	1.58	0.421	0.737	0.926	0.478	0.574
	3	1.11	3.5	2.4	1.41	0.718	0.784	1.24	0.325	0.745	0.939	0.480	0:440

y

DIMENSIONS AND PROPERTIES

Designation		Mass per Metre kg	Area of Section A cm^{2}	Ratio for Local Buckling D / t	Second Moment of Area 1 $\mathrm{~cm}^{4}$	Radius of Gyration r cm	Elastic Modulus$\underset{\mathrm{cm}^{3}}{\mathrm{Z}}$	Plastic Modulus$\begin{gathered} \mathrm{S} \\ \mathrm{~cm}^{3} \end{gathered}$	Torsional Constants		Surface Area per Metre m^{2}
Outside	Thickness										
D mm	$\begin{gathered} \mathrm{t} \\ \mathrm{~mm} \end{gathered}$								$\begin{gathered} \mathrm{J} \\ \mathrm{~cm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~cm}^{3} \end{gathered}$	
21.3	3.2Δ	1.43	1.82	6.66	0.768	0.650	0.722	1.06	1.54	1.44	0.0669
26.9	3.2Δ	1.87	2.38	8.41	1.70	0.846	1.27	1.81	3.41	2.53	0.0845
33.7	$\begin{aligned} & 2.6 \Delta \\ & 3.2 \Delta \\ & 4.0 \Delta \end{aligned}$	$\begin{aligned} & 1.99 \\ & 2.41 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 3.07 \\ & 3.73 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.5 \\ & 8.43 \end{aligned}$	$\begin{aligned} & 3.09 \\ & 3.60 \\ & 4.19 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.08 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.84 \\ & 2.14 \\ & 2.49 \end{aligned}$	$\begin{aligned} & 2.52 \\ & 2.99 \\ & 3.55 \end{aligned}$	$\begin{aligned} & 6.19 \\ & 7.21 \\ & 8.38 \end{aligned}$	$\begin{aligned} & 3.67 \\ & 4.28 \\ & 4.97 \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.106 \\ & 0.106 \end{aligned}$
42.4	$\begin{aligned} & 2.6 \Delta \\ & 3.2 \Delta \\ & 4.0 \Delta \end{aligned}$	$\begin{aligned} & 2.55 \\ & 3.09 \\ & 3.79 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.25 \\ & 3.94 \\ & 4.83 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 13.3 \\ & 10.6 \end{aligned}$	$\begin{aligned} & 6.46 \\ & 7.62 \\ & 8.99 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.39 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 3.05 \\ & 3.59 \\ & 4.24 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 4.93 \\ & 5.92 \end{aligned}$	$\begin{aligned} & 12.9 \\ & 15.2 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 6.10 \\ & 7.19 \\ & 8.48 \end{aligned}$	$\begin{aligned} & 0.133 \\ & 0.133 \\ & 0.133 \end{aligned}$
48.3	$\begin{aligned} & 3.2 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.56 \\ & 4.37 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 4.53 \\ & 5.57 \\ & 6.80 \end{aligned}$	$\begin{aligned} & 15.1 \\ & 12.1 \\ & 9.66 \end{aligned}$	$\begin{aligned} & 11.6 \\ & 13.8 \\ & 16.2 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.57 \\ & 1.54 \end{aligned}$	$\begin{aligned} & 4.80 \\ & 5.70 \\ & 6.69 \end{aligned}$	$\begin{aligned} & 6.52 \\ & 7.87 \\ & 9.42 \end{aligned}$	$\begin{aligned} & 23.2 \\ & 27.5 \\ & 32.3 \end{aligned}$	$\begin{aligned} & 9.59 \\ & 11.4 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 0.152 \\ & 0.152 \\ & 0.152 \end{aligned}$
60.3	$\begin{aligned} & \hline 3.2 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.51 \\ & 5.55 \\ & 6.82 \end{aligned}$	$\begin{aligned} & 5.74 \\ & 7.07 \\ & 8.69 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 15.1 \\ & 12.1 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 28.2 \\ & 33.5 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 2.00 \\ & 1.96 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.78 \\ & 9.34 \\ & 11.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.4 \\ & 12.7 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 46.9 \\ & 56.3 \\ & 67.0 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 18.7 \\ & 22.2 \end{aligned}$	$\begin{aligned} & 0.189 \\ & 0.189 \\ & 0.189 \\ & \hline \end{aligned}$
76.1	$\begin{aligned} & 3.2 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 7.11 \\ & 8.77 \end{aligned}$	$\begin{aligned} & 7.33 \\ & 9.06 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 23.8 \\ & 19.0 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 48.8 \\ & 59.1 \\ & 70.9 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 2.55 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 12.8 \\ & 15.5 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 20.8 \\ & 25.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 97.6 \\ & 118 \\ & 142 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.6 \\ & 31.0 \\ & 37.3 \end{aligned}$	$\begin{aligned} & 0.239 \\ & 0.239 \\ & 0.239 \end{aligned}$
, 88.9	$\begin{aligned} & 3.2 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.76 \\ & 8.38 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 8.62 \\ & 10.7 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 22.2 \\ & 17.8 \end{aligned}$	$\begin{gathered} 79.2 \\ 96.3 \\ 116 \end{gathered}$	$\begin{aligned} & 3.03 \\ & 3.00 \\ & 2.97 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.8 \\ & 21.7 \\ & 26.2 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 28.9 \\ & 35.2 \end{aligned}$	$\begin{aligned} & 158 \\ & 193 \\ & 233 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.6 \\ & 43.3 \\ & 52.4 \end{aligned}$	$\begin{aligned} & 0.279 \\ & 0.279 \\ & 0.279 \end{aligned}$
114.3	$\begin{aligned} & 3.6 \\ & 5.0 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 9.83 \\ & 13.5 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.2 \\ & 21.4 \end{aligned}$	$\begin{aligned} & \hline 31.8 \\ & 22.9 \\ & 18.1 \end{aligned}$	$\begin{aligned} & 192 \\ & 257 \\ & 313 \end{aligned}$	$\begin{aligned} & 3.92 \\ & 3.87 \\ & 3.82 \end{aligned}$	$\begin{aligned} & 33.6 \\ & 45.0 \\ & 54.7 \end{aligned}$	$\begin{aligned} & 44.1 \\ & 59.8 \\ & 73.6 \end{aligned}$	$\begin{aligned} & 384 \\ & 514 \\ & 625 \end{aligned}$	$\begin{gathered} 67.2 \\ 89.9 \\ 109 \end{gathered}$	$\begin{aligned} & 0.359 \\ & 0.359 \\ & 0.359 \end{aligned}$
139.7	$\begin{gathered} 5.0 \\ 6.3 \\ 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 16.6 \\ & 20.7 \\ & 26.0 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 21.2 \\ & 26.4 \\ & 33.1 \\ & 40.7 \end{aligned}$	$\begin{aligned} & 27.9 \\ & 22.2 \\ & 17.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 481 \\ & 589 \\ & 720 \\ & 862 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.77 \\ & 4.72 \\ & 4.66 \\ & 4.60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68.8 \\ & 84.3 \\ & 103 \\ & 123 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 90.8 \\ 112 \\ 139 \\ 169 \\ \hline \end{gathered}$	$\begin{gathered} \hline 961 \\ 1177 \\ 1441 \\ 1724 \\ \hline \end{gathered}$	$\begin{aligned} & 138 \\ & 169 \\ & 206 \\ & 247 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.439 \\ & 0.439 \\ & 0.439 \\ & 0.439 \\ & \hline \end{aligned}$
168.3	$\begin{gathered} 5.0 \\ 6.3 \\ 8.0 \\ 10.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 20.1 \\ & 25.2 \\ & 31.6 \\ & 39.0 \\ & 48.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.7 \\ & 32.1 \\ & 40.3 \\ & 49.7 \\ & 61.2 \end{aligned}$	$\begin{aligned} & \hline 33.7 \\ & 26.7 \\ & 21.0 \\ & 16.8 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 856 \\ 1053 \\ 1297 \\ 1564 \\ 1868 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5.78 \\ & 5.73 \\ & 5.67 \\ & 5.61 \\ & 5.53 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 125 \\ & 154 \\ & 186 \\ & 222 \end{aligned}$	$\begin{aligned} & 133 \\ & 165 \\ & 206 \\ & 251 \\ & 304 \end{aligned}$	$\begin{aligned} & 1712 \\ & 2107 \\ & 2595 \\ & 3128 \\ & 3737 \\ & \hline \end{aligned}$	203 250 308 372 444	0.439 0.529 0.529 0.529 0.529
193.7	5.0 6.3 8.0 10.0 12.5 16.0	$\begin{aligned} & 23.3 \\ & 29.1 \\ & 36.6 \\ & 45.3 \\ & 55.9 \\ & 70.1 \end{aligned}$	29.6 37.1 46.7 57.7 71.2 89.3	$\begin{aligned} & 38.7 \\ & 30.7 \\ & 24.2 \\ & 19.4 \\ & 15.5 \\ & 12.1 \end{aligned}$	$\begin{aligned} & 1320 \\ & 1630 \\ & 2016 \\ & 2442 \\ & 2934 \\ & 3554 \end{aligned}$	$\begin{aligned} & \hline 6.67 \\ & 6.63 \\ & 6.57 \\ & 6.50 \\ & 6.42 \\ & 6.31 \end{aligned}$	$\begin{aligned} & 136 \\ & 168 \\ & 208 \\ & 252 \\ & 303 \\ & 367 \end{aligned}$	$\begin{aligned} & 178 \\ & 221 \\ & 276 \\ & 338 \\ & 411 \\ & 507 \end{aligned}$	$\begin{aligned} & 2640 \\ & 3260 \\ & 4031 \\ & 4883 \\ & 5869 \\ & 7109 \\ & \hline \end{aligned}$	273 337 416 504 606 734	$\begin{aligned} & 0.609 \\ & 0.609 \\ & 0.609 \\ & 0.609 \\ & 0.609 \\ & 0.609 \end{aligned}$

SQUARE HOLLOW SECTIONS

DIMENSIONS AND PROPERTIES
y

Designation		Mass per Metre	Area of Section A $\mathrm{~cm}^{2}$	RatioforLocalBuckling$d / t^{(1)}$	Second Moment of Area 1 cm^{4}	Radius of Gyration$\begin{gathered} \mathrm{r} \\ \mathrm{~cm} \end{gathered}$	Elastic Modulus$\begin{gathered} \mathrm{Z} \\ \mathrm{~cm}^{3} \\ \hline \end{gathered}$	PlasticModulusScm^{3}	Torsional Constants		Surface Area per Metre m^{2}
Size	Thickness										
$\begin{gathered} \text { D D } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \mathrm{~mm} \end{gathered}$								$\begin{gathered} \mathrm{J} \\ \mathrm{~cm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~cm}^{3} \end{gathered}$	
40×40	2.5	2.89	3.68	13.0	8.54	1.52	4.27	5.14	13.6	6.22	0.154
	3.0	3.41	4.34	10.3	9.78	1.50	4.89	5.97	15.7	7.10	0.152
	3.2	3.61	4.60	9.50	10.2	1.49	5.11	6.28	16.5	7.42	0.152
	4.0	4.39	5.59	7.00	11.8	1.45	5.91	7.44	19.5	8.54	0.150
	5.0	5.28	6.73	5.00	13.4	1.41	6.68	8.66	22.5	9.60	0.147
50x50	2.5	3.68	4.68	17.0	17.5	1.93	6.99	8.29	27.5	10.2	0.194
	3.0	4.35	5.54	13.7	20.2	1.91	8.08	9.70	32.1	11.8	0.192
	3.2	4.62	5.88	12.6	21.2	1.90	8.49	10.2	33.8	12.4	0.192
	4.0	5.64	7.19	9.50	25.0	1.86	9.99	12.3	40.4	14.5	0.190
	5.0	6.85	8.73	7.00	28.9	1.82	11.6	14.5	47.6	16.7	0.187
	6.3	8.31	10.6	4.94	32.8	1.76	13.1	17.0	55.2	18.8	0.184
60×60	3.0	5.29	6.74	17.0	36.2	2.32	12.1	14.3	56.9	17.7	0.232
	3.2	5.62	7.16	15.8	38.2	2.31	12.7	15.2	60.2	18.6	0.232
	4.0	6.90	8.79	12.0	45.4	2.27	15.1	18.3	72.5	22.0	0.230
	5.0	8.42	10.7	9.00	53.3	2.23	17.8	21.9	86.4	25.7	0.227
	6.3	10.3	13.1	6.52	61.6	2.17	20.5	26.0	102	29.6	0.224
	8.0	12.5	16.0	4.50	69.7	2.09	23.2	30.4	118	33.4	0.219
70×70	3.0	6.24	7.94	20.3	59.0	2.73	16.9	19.9	92.2	24.8	0.272
	3.6	7.40	9.42	16.4	68.6	2.70	19.6	23.3	108	28.7	0.271
	5.0	9.99	12.7	11.0	88.5	2.64	25.3	30.8	142	36.8	0.267
	6.3	12.3	15.6	8.11	104	2.58	29.7	36.9	169	42.9	0.264
	8.0	15.0	19.2	5.75	120	2.50	34.2	43.8	200	49.2	0.259
80×80	3.0	7.18	9.14	23.7	89.8	3.13	22.5	26.3	140	33.0	0.312
	3.6	8.53	10.9	19.2	105	3.11	26.2	31.0	164	38.5	0.311
	5.0	11.6	14.7	13.0	137	3.05	34.2	41.1	217	49.8	0.307
	6.3	14.2	18.1	9.70	162	2.99	40.5	49.7	262	58.7	0.304
	8.0	17.5	22.4	7.00	189	2.91	47.3	59.5	312	68.3	0.299
90×90	3.6	9.66	12.3	22.0	152	3.52	33.8	39.7	237	49.7	0.351
	5.0	13.1	16.7	15.0	200	3.45	44.4	53.0	316	64.8	0.347
	6.3	16.2	20.7	11.3	238	3.40	53.0	64.3	382	77.0	0.344
	8.0	20.1	25.6	8.25	281	3.32	62.6	77.6	459	90.5	0.339
100×100	4.0	11.9	15.2	22.0	232	3.91	46.4	54.4	361	68.2	0.390
	5.0	14.7	18.7	17.0	279	3.86	55.9	66.4	439	81.8	0.387
	6.3	18.2	23.2	12.9	336	3.80	67.1	80.9	534	97.8	0.384
	8.0	22.6	28.8	9.50	400	3.73	79.9	98.2	646	116	0.379
	10.0	27.4	34.9	7.00	462	3.64	92.4	116	761	133	0.374
120×120	4.0	14.4	18.4	27.0	410	4.72	68.4	79.7	635	101	0.470
	5.0	17.8	22.7	21.0	498	4.68	83.0	97.6	777	122	0.467
	6.3	22.2	28.2	16.0	603	4.62	100	120	950	147	0.464
	8.0	27.6	35.2	12.0	726	4.55	121	146	1160	176	0.459
	10.0	33.7	42.9	9.00	852	4.46	142	175	1382	206	0.454
	12.5	40.9	52.1	6.60	982	4.34	164	207	1623	236	0.448

DIMENSIONS AND PROPERTIES
y

Designation		Mass per Metre kg	Area of Section A $\mathrm{~cm}^{2}$	Ratios for Local Buckling		Second Moment of Area		Radius of Gyration		Elastic Modulus		Plastic Modulus		Torsional Constants		Surface Area per Metre m^{2}
Size	Th					Axis	Axis			Axis	Axis	Axis	Axis			
$\begin{gathered} \text { D B } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \mathrm{~mm} \end{gathered}$			(1) d/t	(1) b/t	$\begin{array}{r} x-x \\ \mathrm{~cm}^{4} \\ \hline \end{array}$	$\begin{gathered} y-y \\ c m^{4} \end{gathered}$	$\begin{aligned} & x-x \\ & c m \end{aligned}$	$\begin{aligned} & y-y \\ & \mathrm{~cm} \\ & \hline \end{aligned}$	$\begin{array}{r} x-x \\ \mathrm{~cm}^{3} \\ \hline \end{array}$	$\begin{gathered} y-y \\ \mathrm{~cm}^{3} \end{gathered}$	$\begin{array}{r} x-x \\ \mathrm{~cm}^{3} \\ \hline \end{array}$	$\begin{gathered} y-y \\ c^{3} \\ \hline \end{gathered}$	$\underset{\mathrm{cm}}{ }{ }^{\mathrm{J}}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~cm}^{3} \end{gathered}$	
50x30	2.5	2.89	3.68	17.0	9.00	11.8	5.22	1.79	1.19	4.73	3.48	5.92	4.11	11.7	5.73	0.154
	3.0	3.41	4.34	13.7	7.00	13.6	5.94	1.77	1.17	5.43	3.96	6.88	4.76	13.5	6.51	0.152
	3.2	3.61	4.60	12.6	6.38	14.2	6.20	1.76	1.16	5.68	4.13	7.25	5.00	14.2	6.80	0.152
	4.0	4.39	5.59	9.50	4.50	16.5	7.08	1.72	1.13	6.60	4.72	8.59	5.88	16.6	7.77	0.150
	5.0	5.28	6.73	7.00	3.00	18.7	7.89	1.67	1.08	7.49	5.26	10.0	6.80	19.0	8.67	0.147
60×40	2.5	3.68	4.68	21.0	13.0	22.8	12.1	2.21	1.60	7.61	6.03	9.32	7.02	25.1	9.73	0.194
	3.0	4.35	5.54	17.0	10.3	26.5	13.9	2.18	1.58	8.82	6.95	10.9	8.19	29.2	11.2	0.192
	3.2	4.62	5.88	15.8	9.50	27.8	14.6	2.18	1.57	9.27	7.29	11.5	8.64	30.8	11.7	0.192
	4.0	5.64	7.19	12.0	7.00	32.8	17.0	2.14	1.54	10.9	8.52	13.8	10.3	36.7	13.7	0.190
	5.0	6.85	8.73	9.00	5.00	38.1	19.5	2.09	1.50	12.7	9.77	16.4	12.2	43.0	15.7	0.187
	6.3	8.31	10.6	6.52	3.35	43.4	21.9	2.02	1.44	14.5	11.0	19.2	14.2	49.5	17.6	0.184
80×40	3.0	5.29	6.74	23.7	10.3	54.2	18.0	2.84	1.63	13.6	9.00	17.1	10.4	43.8	15.3	0.232
	3.2	5.62	7.16	22.0	9.50	57.2	18.9	2.83	1.63	14.3	9.46	18.0	11.0	46.2	16.1	0.232
	4.0	6.90	8.79	17.0	7.00	68.2	22.2	2.79	1.59	17.1	11.1	21.8	13.2	55.2	18.9	0.230
	5.0	8.42	10.7	13.0	5.00	80.3	25.7	2.74	1.55	20.1	12.9	26.1	15.7	65.1	21.9	0.227
	6.3	10.3	13.1	9.70	3.35	93.3	29.2	2.67	1.49	23.3	14.6	31.1	18.4	75.6	24.8	0.224
	8.0	12.5	16.0	7.00	2.00	106	32.1	2.58	1.42	26.5	16.1	36.5	21.2	85.8	27.4	0.219
90×50	3.0	6.24	7.94	27.0	13.7	84.4	33.5	3.26	2.05	18.8	13.4	23.2	15.3	76.5	22.4	0.272
	3.6	7.40	9.42	22.0	10.9	98.3	38.7	3.23	2.03	21.8	15.5	27.2	18.0	89.4	25.9	0.271
	5.0	9.99	12.7	15.0	7.00	127	49.2	3.16	1.97	28.3	19.7	36.0	23.5	116	32.9	0.267
	6.3	12.3	15.6	11.3	4.94	150	57.0	3.10	1.91	33.3	22.8	43.2	28.0	138	38.1	0.264
	8.0	15.0	19.2	8.25	3.25	174	64.6	3.01	1.84	38.6	25.8	51.4	32.9	160	43.2	0.259
100×50	3.0	6.71	8.54	30.3	13.7	110	36.8	3.58	2.08	21.9	14.7	27.3	16.8	88.4	25.0	0.292
	3.2	7.13	9.08	28.3	12.6	116	38.8	3.57	2.07	23.2	15.5	28.9	17.7	93.4	26.4	0.292
	4.0	8.78	11.2	22.0	9.50	140	46.2	3.53	2.03	27.9	18.5	35.2	21.5	113	31.4	0.290
	5.0	10.8	13.7	17.0	7.00	167	54.3	3.48	1.99	33.3	21.7	42.6	25.8	135	36.9	0.287
	6.3	13.3	16.9	12.9	4.94	197	63.0	3.42	1.93	39.4	25.2	51.3	30.8	160	42.9	0.284
	8.0	16.3	20.8	9.50	3.25	230	71.7	3.33	1.86	46.0	28.7	61.4	36.3	186	48.9	0.279
100x60	3.0	7.18	9.14	30.3	17.0	124	55.7	3.68	2.47	24.7	18.6	30.2	21.2	121	30.7	0.312
	3.6	8.53	10.9	24.8	13.7	145	64.8	3.65	2.44	28.9	21.6	35.6	24.9	142	35.6	0.311
	5.0	11.6	14.7	17.0	9.00	189	83.6	3.58	2.38	37.8	27.9	47.4	32.9	188	45.9	0.307
	6.3	14.2	18.1	12.9	6.52	225	98.1	3.52	2.33	45.0	32.7	57.3	39.5	224	53.8	0.304
	8.0	17.5	22.4	9.50	4.50	264	113	3.44	2.25	52.8	37.8	68.7	47.1	265	62.2	0.299
120x60	3.6	9.66	12.3	30.3	13.7	227	76.3	4.30	2.49	37.9	25.4	47.2	28.9	183	43.3	0.351
	5.0	13.1	16.7	21.0	9.00	299	98.8	4.23	2.43	49.9	32.9	63.1	38.4	242	56.0	0.347
	6.3	16.2	20.7	16.0	6.52	358	116	4.16	2.37	59.7	38.8	76.7	46.3	290	65.9	0.344
	8.0	20.1	25.6	12.0	4.50	425	135	4.08	2.30	70.8	45.0	92.7	55.4	344	76.6	0.339
120×80	5.0	14.7	18.7	21.0	13.0	365	193	4.42	3.21	60.9	48.2	74.6	56.1	401	77.9	0.387
	6.3	18.2	23.2	16.0	9.70	440	230	4.36	3.15	73.3	57.6	91.0	68.2	487	92.9	0.384
	8.0	22.6	28.8	12.0	7.00	525	273	4.27	3.08	87.5	68.1	111	82.6	587	110	0.379
	10.0	27.4	34.9	9.00	5.00	609	313	4.18	2.99	102	78.1	131	97.3	688	126	0.374
150×100	4.0	15.1	19.2	34.5	22.0	607	324	5.63	4.11	81.0	64.8	97.4	73.6	660	105	0.490
	5.0	18.6	23.7	27.0	17.0	739	392	5.58	4.07	98.5	78.5	119	90.1	807	127	0.487
	6.3	23.1	29.5	20.8	12.9	898	474	5.52	4.01	120	94.8	147	110	986	153	0.484
	8.0	28.9	36.8	15.8	9.50	1087	569	5.44	3.94	145	114	180	135	1203	183	0.479
	10.0	35.3	44.9	12.0	7.00	1282	665	5.34	3.85	171	133	216	161	1432	214	0.474
	12.5	42.8	54.6	9.00	5.00	1488	763	5.22	3.74	198	153	256	190	1679	246	0.468

11.4. Aluminium sections (extrusions)

When designing with aluminium there is limited use of standard sections since the extrusion process is very versatile and it is possible to achieve a wide variety of section shapes [1]: Standard profiles are covered by British Standard BS1161 [2].

I-Beams

$\mathrm{R}=1.5 \mathrm{t}_{1}$	y											
$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Thickness(mm)		Mass/unit length (kg/m)	$\begin{gathered} \text { Area of } \\ \text { section } \\ \left(\mathrm{mm}^{2} \times 10^{2}\right) \end{gathered}$	Centroid (mm)	$\begin{aligned} & \text { Second moments } \\ & \text { of area } \\ & \left(\mathrm{mm}^{4} \times 10^{4}\right) \end{aligned}$		Radii of gyration(mm)		Moduli of section$\left(\mathrm{mm}^{3} \times 10^{3}\right)$		$\begin{gathered} \text { Torsion } \\ \text { constant } \\ \left(\mathrm{mm}^{4} \times 10^{4}\right) \end{gathered}$
$\mathrm{a} \times \mathrm{b}$	$\begin{gathered} \mathrm{web} \\ \mathrm{t}_{1} \\ \hline \end{gathered}$	flange t_{2}	W	A	c_{x} and c_{y}	I_{x}	I_{y}	r_{x}	r_{y}	Z_{x}	Z_{y}	J
60×30	4	6	1.59	5.83	0	31.6	2.76	23.3	6.89	10.5	1.84	0.753
80×40	5	7	2.54	9.38	0	91.6	7.63	31.2	9.02	22.9	3.82	1.69
100×50	6	8	3.72	13.7	0	210	17.0	39.2	11.1	42.1	6.80	3.30
120×60	6	9	4.77	17.6	0	403	32.8	47.8	13.6	67.2	10.9	4.76
140×70	7	10	6.33	23.4	0	725	57.9	55.7	15.7	104	16.5	8.00
160×80	7	11	7.64	28.2	0	1170	94.6	64.5	18.3	147	23.7	10.8

Channel Sections

$\mathrm{R}=1.5 \mathrm{t}_{1}$

$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Thickness (mm)		Mass/ unit length (kg/m)	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { section } \\ \left(\mathrm{mm}^{2} \times\right. \\ \left.10^{2}\right) \end{gathered}$	Centroid (mm)		Second moments of area$\left(\mathrm{mm}^{4} \times 10^{4}\right)$		Radii of gyration (mm)		Moduli of section $\left(\mathrm{mm}^{3} \times 10^{3}\right)$		Torsion constant $\left(\mathrm{mm}^{4} \times\right.$ 10^{4})	Shear centre from back of section (mm)
$\mathrm{a} \times \mathrm{b}$	web t_{1}	flange t_{2}	W	A	c_{x}	c_{y}	I_{x}	I_{y}	r_{x}	r_{y}	Z_{x}	Z_{y}	J	c_{c}
60×30	5	6	1.69	6.24	0	9.87	32.2	5.03	22.7	8.98	10.7	2.50	0.690	11.7
80×35	5	7	2.29	8.44	0	11.3	79.8	9.57	30.8	10.6	20.0	4.04	1.12	13.8
100×40	6	8	3.20	11.8	0	12.4	171	16.9	38.1	11.9	34.2	6.12	2.07	15.2
120×50	6	9	4.19	15.5	0	15.9	339	36.8	46.8	15.4	56.5	10.8	3.22	19.7
140×60	7	10	5.66	20.9	0	18.9	625	71.5	54.7	18.5	89.2	17.4	5.51	23.6
160×70	7	10	6.58	24.3	0	21.8	970	116	63.2	21.8	121	24.0	6.41	27.6
180×75	8	11	8.06	29.8	0	22.7	1480	159	70.5	23.1	164	30.5	9.63	29.0
200×80	8	12	9.19	33.9	0	24.5	2110	210	78.8	24.9	211	37.8	12.4	31.3
240×100	9	13	12.5	46.0	0	30.3	4170	450	95.2	31.2	345	64.6	20.2	39.2

Lipped Channel Sections

$* \mathrm{~A}$	$=$	$74.00 \mathrm{t}^{2}$
R	$=$	2 t
a	$=$	32 t
b	$=$	16 t
c_{x}	$=$	0
c_{y}	$=$	5.36 t
c_{c}	$=$	6.91 t
I_{x}	$=$	$12371 \mathrm{t}^{4}$
I_{y}	$=$	$2407 \mathrm{t}^{4}$
r_{x}	$=$	12.93 t
r_{y}	$=$	5.70 t
Z_{x}	$=$	$773 \mathrm{t}^{3}$
Z_{y}	$=226 \mathrm{t}^{3}$	
J	$=41.29 \mathrm{t}^{4}$	

*Excludes small areas present at
internal radii ($4 \times$. ${ }^{2}$)

$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { Thickness } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Mass/ } \\ \text { unit } \\ \text { length } \\ (\mathrm{kg} / \mathrm{m}) \end{gathered}$	Area of section $\left(\mathrm{mm}^{2} \times\right.$ 10^{2})	Centroid (mm)		Secondmoments ofarea$\left(\mathrm{mm}^{4} \times 10^{4}\right)$		Radii of gyration (mm)		Moduli of section $\left(\mathrm{mm}^{3} \times 10^{3}\right)$		Torsion constant $\left(\mathrm{mm}^{4} \times\right.$ 10^{3})	Shear centre from back of section (mm)
$\mathrm{a} \times \mathrm{b}$	t	W	A	c_{x}	c_{y}	I_{x}	I_{y}	r_{x}	r_{y}	Z_{x}	Z_{y}	J	c_{c}
80×40	2.5	1.25	4.62	0	13.4	48.3	9.40	32.3	14.2	12.1	3.53	1.61	17.3
100×50	3.13	1.96	7.23	0	16.8	118	23.0	40.4	17.8	23.6	6.90	3.94	21.6
120×60	3.75	2.82	10.4	0	20.1	245	47.6	48.5	21.4	40.8	11.9	8.16	25.9
140×70	4.38	3.84	14.2	0	23.5	453	88.2	56.6	24.9	64.8	18.9	15.1	30.2

Equal Bulb Angle Sections

$* \mathrm{~A}$	$=54.92 \mathrm{t}^{2}$
R	$=2 \mathrm{t}$
a	$=\mathrm{b}=20 \mathrm{t}$

*Excludes small areas present at internal radii $\left(4 \times 0.086 t^{2}\right)$
$\mathrm{c}_{\mathrm{x}}=6.07 \mathrm{t}$
$c_{y}=6.07 \mathrm{t}$
$I_{x}=2605 t^{4}$
$\mathrm{I}_{\mathrm{y}}=2605 \mathrm{t}^{4}$
$\mathrm{I}_{\mathrm{u}}=4030 \mathrm{t}^{4} \quad \mathrm{Z}_{\mathrm{x}}=187 \mathrm{t}^{3}$
$\mathrm{I}_{\mathrm{v}}=1180 \mathrm{t}^{4}$
$Z_{y}=187 \mathrm{t}^{3}$

$r_{v}=4.64 \mathrm{t} \quad \tan \alpha=$
$\mathrm{u}-\mathrm{u}$ and $\mathrm{v}-\mathrm{v}$ are principal axes
$r_{x}=6.89 \mathrm{t} \quad \mathrm{Z}_{\mathrm{u}}=285 \mathrm{t}^{3}$
$\mathrm{r}_{\mathrm{y}}=6.89 \mathrm{t} \quad \mathrm{Z}_{\mathrm{v}}=138 \mathrm{t}^{3}$
$\mathrm{r}_{\mathrm{u}}=8.57 \mathrm{t} \quad \alpha=45^{\circ}$
$\mathrm{J}=51.32 \mathrm{t}^{4}$

$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Thick- ness (mm)	Mass/ unit length (kg/m)	Area of section ($\mathrm{mm}^{2} \times$ 10^{2})	Centroid (mm)	Second moments of area $\left(\mathrm{mm}^{4} \times 10^{4}\right)$			Radii of gyration (mm)			Moduli of section$\left(\mathrm{mm}^{3} \times 10^{3}\right)$			Torsion constant $\left(\mathrm{mm}^{4} \times\right.$ 10^{4})
$\mathrm{a} \times \mathrm{b}$	t	W	A	c_{x} and c_{y}	I_{x} and I_{y}	I_{u}	I_{v}	$\begin{gathered} \mathrm{r}_{\mathrm{x}} \text { and } \\ \mathrm{r}_{\mathrm{y}} \\ \hline \end{gathered}$	r_{u}	r_{v}	$\begin{gathered} \hline Z_{x} \text { and } \\ Z_{y} \\ \hline \end{gathered}$	Z_{u}	Z_{v}	J
50×50	2.5	0.930	3.43	15.2	10.2	15.7	4.61	17.2	21.4	11.6	2.92	4.45	2.16	0.200
60×60	3	1.34	4.94	18.2	21.1	32.6	9.56	20.7	25.7	13.9	5.05	7.70	3.73	0.416
80×80	4	2.38	8.79	24.3	66.7	103	30.2	27.6	34.3	18.6	12.0	18.2	8.82	1.31
100×100	5	3.72	13.7	30.3	163	252	73.8	34.4	42.8	23.2	23.4	35.6	17.2	3.21
120×120	6	5.36	19.8	36.4	338	522	153	41.3	51.4	27.8	40.4	61.6	29.8	6.65

[1] Dwight, J.B. (1999), Aluminium Design and Construction, E\&FN Spon, London and New York.
[2] British Standards Institute, (1977), Specification for Aluminium Alloy Sections for Structural Purposes,
BS1161:1977, British Standards Institute, UK.

11.5. Glass fibre reinforced plastic (GFRP) sections (pultrusions)*

A wide variety of shapes is also possible with the pultrusion process and each GFRP manufacturer will produce a different standard product range. Typical examples:

I- Beams

Channels

Square Hollow Sections

I-Beams

Section Designation	Depth D (mm)	Width B (mm)	Web t (mm)	Flange T (mm)	I_{xx} $\left(\mathrm{cm}^{4}\right)$	I_{yy} $\left(\mathrm{cm}^{4}\right)$	Area $\left(\mathrm{cm}^{2}\right)$
53×50	53	50	7	7	40.8	14.7	9.73
102×51	102	51	6.35	6.35	186	14.2	12.1
150×150	150	150	10	10	1660	564	43.0
200×200	200	200	10	10	4100	1330	58.0

Channels

Section Designation	Depth D (mm)	Width B (mm)	Web t (mm)	Flange T (mm)	I_{xx} $\left(\mathrm{cm}^{4}\right)$	I_{yy} $\left(\mathrm{cm}^{4}\right)$	Area $\left(\mathrm{cm}^{2}\right)$
50.8×25.4	50.8	25.4	3.2	3.2	11.6	1.82	3.05
73×25	73	25	5.0	5.0	39.4	2.76	5.65
100×40	100	40	5.0	5.0	121	11.9	8.50
200×50	200	50	10	10	1390	48.0	28.0
200×60	200	60	8.0	8.0	1300	68.9	24.3
500×60	500	60	7.0	7.0	11800	73.9	42.4

Square Hollow Sections

Designation		Area	
Size	Thickness		$\begin{array}{c}\mathrm{t} \\ (\mathrm{mm})\end{array}$
$\left(\mathrm{cm}^{2}\right)$			\(\left.\begin{array}{c}\mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{yy}}

\left(\mathrm{cm}^{4}\right)\end{array}\right]\)| 31.8×31.8 | 3.0 | 3.46 | 4.83 |
| :---: | :---: | :---: | :---: |
| 44.0×44.0 | 6.0 | 9.12 | 22.5 |
| 51.0×51.0 | 3.2 | 6.12 | 23.4 |
| 100×100 | 4.0 | 15.3 | 236 |

[^1]
[^0]: Areas calculated to 3 significant figures

[^1]: * The GFRP section details are based on information provided by Fibreforce Composites Ltd, Runcorn, Cheshire.

