Section A
(a) i) $w_{x}=\frac{w x}{\ell}$
ii)

$$
\begin{aligned}
& M=\frac{w l^{2}}{3}+\frac{w x^{3}}{6 l}-\frac{w l x}{2} \\
& E I v^{\prime \prime}=M \\
& E I_{v^{\prime}}=\frac{w l^{2}}{3} x+\frac{w x^{4}}{24 l}-\frac{w l x^{2}}{4}+c_{1} \\
& E I v=\frac{w l^{2}}{6} x^{2}+\frac{w x^{5}}{120 l}-\frac{w l x^{3}}{12}+c_{1} x+c_{2}
\end{aligned}
$$

$$
\|_{\frac{w l}{2}}^{\frac{w l^{2}}{3}} \stackrel{\frac{w x}{l}}{l}
$$

Boundary conditions: $v(0)=0 \quad v^{\prime}(0)=0$

$$
\begin{aligned}
\Rightarrow & E I_{v}=\frac{w x^{5}}{120 \ell}-\frac{w x^{3}}{12}+\frac{w \ell^{2} x^{2}}{6} \\
& E I v(l)=\frac{11 w l^{4}}{120} \quad E I_{v}(\ell)=\frac{w l^{3}}{8}
\end{aligned}
$$

bic)

$$
\begin{aligned}
& E I \theta_{1}=\frac{l}{3}+l=\frac{4}{3} l \\
& E I \theta_{0}=\frac{w l^{3}}{8} \\
& \Rightarrow X \theta_{1}=\theta_{0} \\
& X=\frac{3}{32} w l^{2}
\end{aligned}
$$

Moment at $C: 93.75 \mathrm{kN}$
Axial forces

$$
V_{E}=\frac{93,75}{10}=3.375 \mathrm{kN} \quad V_{D}=-9,375 \mathrm{kN}
$$

ii) Horizontal deflection

$$
\delta_{H_{1}, A}=\frac{\| w l^{4}}{120 E I}-\frac{M l^{2}}{2 E I}=45.83-23.48=22.40 \mathrm{~mm}
$$

Vertical deflection

$$
\delta_{v, A}=\frac{M l}{6 E I} \cdot 5=\frac{93,75 \cdot 5 \cdot 10}{6 \cdot 200 \cdot 10^{6}}=3.9 \mathrm{~mm}
$$

iii) Deformation at B only vertical and 100 mm

$$
\begin{aligned}
& \theta_{0}=\frac{0,1}{10} \quad E I \theta_{1}=\frac{4}{3} l \\
& \Rightarrow X=0,01 \cdot \frac{3}{4 l} E I=130 \mathrm{kNm} \quad \text { Moment at } C
\end{aligned}
$$

aa) i)

$$
\begin{aligned}
& I=\pi r^{3} t=3.14 \cdot 10^{-5} \\
& \sigma_{A}=\frac{M_{4}}{I}=-\frac{25 \cdot 10^{3} \cdot 0.1}{3.14 \cdot 10^{-5}}=-79.6 \mathrm{MPq} \\
& \sigma_{B}=0
\end{aligned}
$$

ii) Due to torque

$$
\tau_{t}=\frac{T}{2 A_{e} t}=\frac{25 \cdot 10^{3} \cdot 0,1}{2 \pi \cdot 0,1^{2} \cdot 0,01}=3.98 \mathrm{MPa}
$$

Due to shear stress
at A is zero
at B is $\tau_{s}=-\frac{S A \bar{y}}{I \cdot 2 E}=$

$$
=\frac{25 \cdot 10^{3} \cdot \pi \cdot 0,1 \cdot 0,01 \cdot 0,064}{3 \cdot 14 \cdot 10^{-5} \cdot 0,02}=-7,95 M \mathrm{Ma}
$$

Total at $A \quad \tau=3.98 \mathrm{MPa}$
at $B \quad \tau=-12 \mathrm{MPa}$
b.) i) Moho's circle at $B \quad E_{1}=-3.98$ and $E_{2}=3.98 \mathrm{MPa}$

Mohur's circle at A

$$
\begin{array}{ll}
\tau_{A}=-79.6 \mathrm{MPa} & \tau=3.98 \mathrm{MPa} \\
\tau_{1}=-80 \mathrm{MPa} & \tau_{2}=0.2 \mathrm{MPa}
\end{array}
$$

A is clearly critical, so using

$$
\lambda^{2}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\sigma_{2}^{2}+\sigma_{1}^{2}\right]=2 r^{2}
$$

$$
\begin{gathered}
\lambda^{2}\left[80.2^{2}+0.2^{2}+80^{2}\right]=2.275 \\
\Rightarrow \lambda=3.41
\end{gathered}
$$

ii) too high
iii) tapering tube struts box. crossection etc.

For instance tapering tube

$$
E=\frac{M r}{2 \pi r^{3} A}=\frac{M}{2 \pi r^{2} A}
$$

Need to reduce stress by a factor of ~ 4. Increase radius by ~ 2.

31a)

b) il Number of redundancies is 1

- Remove support A
- Introduce pin at B
- Cut cable
- ...
ii)

rotation at B
Moment at $B: M_{B}=\frac{q e^{2}}{2}$

$$
E I \theta_{B}=-\frac{w l^{3}}{24}+\frac{w l^{3}}{6 l}=\frac{w l^{3}}{8} \Rightarrow E I \delta_{1}=\frac{w l^{4}}{8}
$$

$B C$ as catotilever
ET $\delta_{2}=\frac{w l^{4}}{8}$
Total dis:

$$
\delta=\delta_{1}+\delta_{2}=\frac{w \ell^{4}}{4 E I}
$$

iii)

rotation at B

$$
E I \theta_{n}=-\frac{T l^{2}}{3} \Rightarrow E I \delta_{1}=-\frac{T l^{3}}{3}
$$

$B C$ as cantilever

$$
\begin{aligned}
& E I \delta_{2}=-\frac{T l^{3}}{3} \\
& \delta=\delta_{1}+\delta_{2}=-\frac{2 T l^{3}}{3 E I}
\end{aligned}
$$

Compatibility

$$
\begin{aligned}
& \frac{2 \ell^{3} T}{3 E I}+\frac{T}{E A} \frac{\ell}{2}=\frac{w l^{4}}{4 E I} \\
& \Rightarrow T=\frac{3 w l^{4} E A}{8 l^{3} E A+6 \ell E I}
\end{aligned}
$$

4 al

$$
-\cdots-==
$$

bl

Holograph

Max lisp. $\delta=\alpha L$

Internal work

$$
W_{i}=2 \sqrt{\alpha^{2} L^{2}+L^{2}} m \sqrt{1+\alpha^{2}}=2 L\left(1+\alpha^{2}\right) m
$$

External work

$$
\begin{aligned}
\frac{W_{e}}{P} & =4 \frac{L}{2} \alpha L \frac{\delta}{3}+(3 L-2 \alpha L) L \frac{\delta}{2} \\
& =\frac{2}{3} \alpha L^{2} \delta+3 L^{2} \frac{\delta}{2}-\alpha L^{2} \delta \\
& =-\frac{1}{3} \alpha L^{2} \alpha L+\frac{3}{2} \alpha L^{3}=\frac{1}{6} L^{3} \alpha(9-2 \alpha)
\end{aligned}
$$

$$
\begin{aligned}
& W_{e}=W_{i} \\
& P=\frac{2 L\left(1+\alpha^{2}\right) m}{\frac{1}{6} L^{3} \alpha(9-2 \alpha)}=\frac{12\left(1+\alpha^{2}\right) m}{L^{2} \alpha(9-2 \alpha)}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d p}{d \alpha} & =0 \\
\frac{d p}{d \alpha} & =\frac{24 \alpha m L^{2} \alpha(9-2 \alpha)-12\left(1+\alpha^{2}\right) m L^{2}(9-4 \alpha)}{\cdots 1}=0 \\
& =2 \alpha^{2}(9-2 \alpha)-\left(1+\alpha^{2}\right)(9-4 \alpha)=0 \\
& =18 \alpha^{2}-4 \alpha^{3}-9+4 \alpha-9 \alpha^{2}+4 \alpha^{3}=0 \\
& =9 \alpha^{2}+4 \alpha-9=0 \Rightarrow \alpha=0.802
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \text { - }-\cdots=-\cdots \\
& 8
\end{aligned} \quad \Rightarrow p=m \frac{p L^{2} 3}{9 L^{2}}
$$

Think of strips/beams in horizontal direction: compatibility not important, however equilibrium important.
5)
a)

b) Mechanism 1: $H \cdot \delta=2 \cdot\left(\frac{2 \delta}{l}\right) M_{p}+4 \frac{\delta}{l} M_{p} \Rightarrow H=M_{p} \frac{8}{l}$

Mechanism 2: $w \cdot 2 l \cdot \frac{\delta}{2}=4 \frac{\delta}{l} M_{p} \Rightarrow w=M_{p} \frac{4}{l^{2}}$
Mechanism 3: H, $\frac{\delta}{2}+2 w l \frac{\delta}{2}=M_{\rho} \frac{\delta}{\ell}+M_{\rho} \frac{3 \delta}{\ell}$

$$
\Rightarrow 1 t+2 w l=\frac{8 M_{\rho}}{l}
$$

c)

$$
\begin{aligned}
& \underbrace{\infty}_{1} \\
& \delta=\phi x=(2 \ell-x) \theta \\
& \Rightarrow \phi=\frac{\delta}{x} \quad \theta=\frac{\delta}{2 \ell-x}
\end{aligned}
$$

Internal virtual work

$$
\begin{aligned}
W_{\text {int }} & =M_{p} \phi+M_{p} \theta+M_{p}(\theta+\phi)=2 M_{p}(\theta+\phi) \\
& =2 M_{p} \delta\left(\frac{1}{x}+\frac{1}{2 l-x}\right)=2 M_{p} \delta \frac{2 l}{x(2 l-x)}=\frac{4 M_{p} \delta l}{x(2 l-x)}
\end{aligned}
$$

External virtual work

$$
\begin{aligned}
W_{\text {ext }} & =H \frac{\delta l}{2 x}+w\left(x \frac{\delta}{2}+(2 l-x) \frac{\delta}{2}\right) \\
& =H \frac{\delta l}{2 x}+\delta \frac{H}{2}=H \delta \frac{l+x}{2 x}
\end{aligned}
$$

Work equilibrium

$$
\begin{aligned}
& H=\frac{4 M_{p} l}{x(2 l-x)} \frac{2 x}{(l+x)}=\frac{8 M_{p} l}{2 l^{2}+l x-x^{2}} \\
& \frac{d H}{d x}=-\frac{8 M_{p} l(l-2 x)}{\left(2 l^{2}+l x-x^{2}\right)^{2}}=0 \quad \Rightarrow x=\frac{l}{2}
\end{aligned}
$$

ba) equilibrium + material law
b) i)

From Data Book

$$
\begin{aligned}
& E I \delta_{11}=\frac{8}{3} X_{1} \quad E I \delta_{12}=\frac{4}{3} x_{1} \\
& E I \delta_{21}=\frac{16}{3} x_{2} \quad \delta_{21}=\delta_{12} \\
& \delta_{10}=\frac{W 64}{16 E I} \quad \Longrightarrow E I \delta_{10}=4 \mathrm{~W} \quad E I \delta_{20}=8 \mathrm{~W} \\
& \left(\begin{array}{ll}
\frac{8}{3} & \frac{4}{3} \\
\frac{4}{3} & \frac{16}{3}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{8} w \Rightarrow x_{1}=\frac{6}{7} w \\
& x_{2}=\frac{9}{7} \mathrm{~W} \\
& \frac{6}{7} \mathrm{~W} \\
& \text { dB } 356 \times 127 \times 39 \quad Z_{e}=576 \mathrm{~cm}^{3} \quad Z_{p}=659 \mathrm{~cm}^{3} \\
& M_{y}=355 \cdot 10^{6} \cdot 57610^{-6}=204.5 \mathrm{kNm} \\
& \frac{19}{14} W=204.5 \Longrightarrow 150.68 \mathrm{kN}
\end{aligned}
$$

ii)

Optimum solution with $\quad M_{2}=M_{p}$ and $-2 W+\frac{M_{2}}{2}=-M_{p}$ (moments in right span)

$$
\Rightarrow W=\frac{3}{4} M_{p}
$$

$$
\begin{aligned}
M_{p}=355 \cdot 10^{6} \cdot 659 \cdot 10^{-3} & =233.9 \mathrm{kNm} \\
& \Longrightarrow W=175.45 \mathrm{kN}
\end{aligned}
$$

iii)

$$
\begin{aligned}
M_{p}-W \cdot 4+V \cdot 8=0 \Rightarrow V & =\frac{M_{p}}{4} \\
& =58.5
\end{aligned}
$$

(b) Students must make the frame determinate. Addition of a pin at C is the
(i) method given in the question text. There is no horizontal reaction at E therefore:
$H_{D}=\frac{10(10)}{2}=50 \mathrm{kN}$

D
$\theta_{1}=\theta_{2}$
$\theta_{1}=\frac{M L}{3 E I}$
$\theta_{2}=\left[\frac{d v}{d x} @ x=L\right]-\frac{M L}{E I}$
$\frac{d v}{d x}=\frac{w L^{3}}{24}-\frac{w L^{3}}{4}+\frac{w L^{3}}{3}=\frac{w L^{3}}{8 E I}$
$\theta_{2}=\frac{w L^{3}}{8 E I}-\frac{M L}{E I}$
$M=93.75 \mathrm{kNm}$

Therefore vertical reactions (and thus maximum axial force in the frame) are:
$V_{E}=93.75 \div 10=9.375 \mathrm{kN}$
$V_{D}=-9.375 k N$

