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EGT2
ENGINEERING TRIPOS PART IIA

Fri 27 Apr 2018 9.30 to 11.10

Module 3A6

HEAT AND MASS TRANSFER

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A lamp is composed of a linear filament and focused using a parabolic reflector,
as shown in Fig. 1. The filament has an area per unit length A1 = 0.01 m2 with an
emissivity of ε1 = 0.8 and it has a temperature of T1 = 1800 K at steady state. The
heater is partially enclosed by a long, thin parabolic reflector with area per unit length
A2 = 0.5 m2, whose inner and outer surface emissivities are ε2i = 0.1 and ε2o = 0.8,
respectively. The system may be assumed to be at steady state within an infinite medium
with temperature T3 = 300 K. The filament is held by an optically transparent support,
which has a conductive thermal resistance of Rc = 10 K m W−1 and is only in thermal
contact with the filament and the environment at temperature T3. Convective losses can
be neglected.

(a) Sketch the appropriate radiation circuit, and write expressions for each of the
network resistances. [20 %]

(b) Calculate the appropriate view factors for each surface with the others. You may
assume that the filament is small relative to the surroundings such that the view factor of
the surroundings to the inner surface of the reflector is F32i = 1. [15 %]

(c) Calculate the effective resistance Reff,rad for the total radiation circuit from the
filament to the environment. [25 %]

(d) Calculate the radiative heat loss, q̇1, rad , and conductive heat loss, q̇1, c , from the
filament. [15 %]

(e) For a fixed filament power q̇1 = q̇1, rad + q̇1, c, determine the limits of filament
temperature T1 for high and low conduction, for which Rc→ 0 and Rc→ ∞, respectively.
Sketch the variation of the filament temperature T1 versus Rc. [25 %]
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Fig. 1

Page 3 of 6 (TURN OVER



Version SH/3

2 A metal sphere of diameter D , initially at a uniform temperature T0 is cooled by
a flow of fluid at a free stream velocity U∞ and temperature T∞ . A cylindrical wake
is established at some distance z downstream of the sphere, where the local mean axial
velocity u and temperature T are found to fit the following functions

U∞−u
∆u

=
T −T∞

∆T
= exp(−β r2)

where ∆u and ∆T are the absolute velocity and temperature differences between the
centreline and outer flow, respectively, r is the radial coordinate, and β is a constant.
The properties of the metal are density ρm , specific heat capacity cm , and conductivity
λm . The fluid has constant density ρ∞ , specific heat capacity at constant pressure c∞

and conductivity λ∞ . The mean Nusselt number for heat transfer with the sphere is

NuD =
hD
λ∞

, where h is the convective heat transfer coefficient.

(a) Sketch the physical layout of the flow and object, including the wake and
corresponding velocity and temperature profiles. Label your diagram clearly. [10%]

(b) Obtain a criterion for which the temperature of the sphere Ts can be assumed to be
uniform. [15%]

(c) Assuming uniform temperature for the sphere, show that the temperature difference
Ts−T∞ between the sphere and the surrounding fluid is given by: [20%]

Ts−T∞ = (T0−T∞)exp(−t/τ)

where τ =
ρmcmD2

6λ∞NuD

(d) Show that the enthalpy flow difference between a cross section downstream and
upstream of the sphere, ∆Ḣ is: [30%]

∆Ḣ = ρ∞U∞c∞T∞

π

β

[
∆T
T∞

− ∆u
U∞

− 1
2

∆u
U∞

∆T
T∞

]
You may use the fact that

∫
∞
0 exp(−Kr2) 2πr dr = π

K .

(e) Assuming that the flow conditions remain quasi-steady, with negligible
accumulation in the wake, obtain an expression for ∆T

Ts−T∞
as a function of ∆u

U∞
and NuD,

including any other non-dimensional parameters. [25%]
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3 Consider the diffusion of nutrients and wastes through membrane barriers such as
those in sea urchins. Each spike can be considered as an extended surface for mass transfer
of a target substance. We can analyse a single protrusion as a cylindrical surface, with a
length L and radius R , shown as a cross section in Fig. 2. The inside of the organism
contains a uniform mass fraction Y0 , which can diffuse through the fluid of density
ρ with a mass diffusion coefficient D . The interface of the membrane is porous to the
target substance only, and not the diluent water. It offers a mass diffusion resistance Rm ,
and is subject to an outer convection coefficient hm for surroundings with mass fraction
Y∞ . Convection terms can be neglected for the transport inside the cylinder, and the
overall flow of the permeable species is steady and outwards.

z
r

Y0 2R

dz

Fig. 2

(a) Assume first that gradients of species in the radial direction within the spike are
negligible. Using a species balance, write a differential equation for the species mass
fraction Y across an element dz as a function of the fluid properties and the flux, jm ,
which is assumed positive in the outward direction. [20%]

(b) Solve the equation for the mass fraction, for Y = Y0 at z = 0 , and the assumption
of a very long cylinder. Sketch the mass fraction and its flux across the membrane as a
function of z . [20%]

(c) Determine a condition involving the fluid properties, geometry and flow resistances
for which the assumption of one-dimensional diffusion in part (a) is reasonable. [20%]

(d) Derive the general species conservation equation including one-dimensional
convection in the z direction with a constant velocity uz , and diffusion in r and z . [20%]

(e) Write detailed boundary conditions for the equation in part (d), for a given
concentration at the inlet, radial fluxes controlled subject to membrane resistance and
outer convection, and a very long cylinder. Do not solve it. [20%]
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4 A sphere of radius R with initial temperature of To is plunged into a liquid bath at
time t = 0 with temperature T∞, where To > T∞. The heat exchange between the bath and
the sphere is fast such that the surface temperature of the sphere is constant.

(a) Sketch the temperature T versus the radius r within the sphere from 0 to R for
increasing times. [10%]

(b) The governing conservation of energy equation for spherical coordinates is

∂T
∂ t

=
α

r2
∂

∂ r

(
r2 ∂T

∂ r

)
where thermal diffusivity is given by α = λ/(ρc), and λ is the thermal conductivity, ρ is
the density and c is the specific heat capacity of the sphere material. Give the equations
for the appropriate initial and boundary conditions. Hint: Use symmetry at r = 0 to define
one boundary condition. [10%]

(c) Using the results from (b) derive a non-dimensional governing energy conservation
equation for 1-D spherical conduction, as well as non-dimensional boundary conditions.

Use θ =
T −T∞

To−T∞

as the non-dimensional temperature. [25%]

(d) Show that you may reduce the problem to an equivalent cartesian 1-D heat transfer
problem with the use of θ(r̂, τ̂) = ψ(r̂, τ̂)/r̂ resulting in

∂ψ

∂ τ̂
=

∂ 2ψ

∂ r̂2 ,

where r̂ and τ̂ are the non-dimensional radial dimension and time, respectively. Provide
the equivalent boundary and initial conditions in terms of ψ . [25%]

(e) Use separation of variables to solve the non-dimensional differential energy
equation. [30%]

END OF PAPER
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Answers

1.
(a) -
(b) F13 = 0.35, F12i = 0.65, F2i1 = 0.013, F2i3 = 0.40, F2i2i = 0.286
(c) 126.6 kW m−1

(d) q1,rad = 4695 W m−1, q1,c = 150 W m−1

(e) -

2.
(a) -
(b) hd/λm << 1
(c) -
(d) -

(e) ∆T
Ts−T∞

= NuD
α∞βD

U∞

(
1− 1

2
∆U
U∞

)−1

3.
(a) d2T

dz2 + 2 jm
ρDR = 0

(b) jm
ρD = Y−Y∞

Rm+1/hm

(c) R/D
Rm+1/hm

<< 1

(d) ∂ 2Y
∂ z2 + 1

r
∂

∂ r

(
r ∂Y

∂ r

)
− uz

D
∂Y
∂ z = 0

(e) Y (0) = Y0, ρD
[

∂Y
∂ r

]
r=R

= ρ
Y (R)−Y∞

Rm+1/hm
, Y (L→ ∞) = Y∞

4.
(a) -
(b) T (r,0) = T0,

[
∂T
∂ r

]
r=0

= 0, T (R) = T∞

(c) ∂θ

∂ τ̂
= 1

r̂2
∂

∂ r̂

(
r̂2 ∂θ

∂ τ̂

)
B.C.:

[
∂θ

∂ r̂

]
r̂=0

= 0, θ(1, τ̂) = 0, I.C.: θ(r̂,0) = 1

(d) B.C.: ψ(1, τ̂) = 0,
[

∂ψ

∂ r

]
r̂=0

= 0, B.C.: ψ(r̂,0) = r̂

(e) θ = 2∑
∞
n=1(−1)n+1e−ω2τ̂

(
sin(ωnr̂)

ω r̂

)
, ωn =

√
nπ
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