
2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

1 

Qn 1  (a) Schematics of the non-inverting Schmitt trigger buffer is presented in the left side 

of below figure. Resistance of MOSFETs are inversely proportional with their aspect ratio 

i.e. W/L, thus the first two inverters needs to have increasing order in terms of aspect ratio. 

The feedback inverter needs to have the smallest possible k=k’W/L for higher performance. 

Therefore, the resulting aspect ratios can be seen in the right side of below figure.  

 
Some alternative solutions:  

 

                                    [40%] 

 

(b)   

 



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

2 

When the clock is low, pMOS on the left top is on and nMOS on the bottom connected to 

CLK is off. Thus, the input of the inverter on the right is high, and the output is f(a,b,c)=0, 

when the clock is low.  

 

When the clock becomes high, then the pMOS controlled via the clock turns off and the 

nMOS controlled via the clock turns on. Consequently, the input of the inverter becomes 

𝑔(𝑎, 𝑏, 𝑐) = 𝑐 + 𝑎�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅ as shown in above figure. Hence, the output is 𝑓(𝑎, 𝑏, 𝑐) = 𝑔(𝑎, 𝑏, 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑐 + 𝑎�̅�  .  

The (stable) feedback transistor is there to provide input to the inverter in case all other input 

paths are open, i.e., when f=1. 

              [30%] 

 

(c)     This logic function can be implemented with 4 transistors, but any solution lower 

than 8 transistors (except CLK transistors) will get full mark.  

 

Two nMOS transistors with coupled drains on the left implement XOR operation with pass-

transistors. nMOS controlled with c perform AND operation with the XOR input at its 

source. Thus, the output is "a XOR b" provided that c=1. Low logic output is provided with 

the bottom nMOS , when c=0, and thus ouput is provided for all possible input logic values. 

Hence, f(a,b,c)= (a XOR b )c. 

 

 [30%] 

 

 

 

Assessor’s comments: 

 

The question was well answered. Many provided inverting Schmitt trigger designs instead 

of non-inverting in part (a), and mistakenly found the function complement in part (b), 

while some did not include the clock signal. In the last part a common mistake was the use 

of input configurations with high impedance output. 



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

3 

Qn 2.  (a) The aspect ratios are calculated to ensure kp=kn 

        
                [30%] 

(b) During a single period of duration T=1/f, the inverter charges the load capacitor C to 

Vdd and discharges it back to zero, consuming twice the energy stored on it. Thus, the energy 

consumed during one period is 

   ⇒    𝐸 = 𝐶𝑉𝑑𝑑
2  

The power consumed by the inverter is then given by 

 ⇒    𝑃 =
𝐶𝑉𝑑𝑑

2

𝑇
= 𝐶𝑉𝑑𝑑

2 𝑓 

𝑃 = 𝐶𝑉𝐷𝐷
2 𝑓 = (45 × 10−15𝐹)(5𝑉)2(4.1× 109𝐻𝑧) = 4.61𝑚𝑊 [20%] 

 

(c)  

• 𝐶𝑃 = 17.7 𝑓𝐹 
• 𝐶𝑖𝑛 = 11.8 𝑓𝐹  
• 𝐶𝑇 =  29.5 𝑓𝐹 

 
𝐶𝑃 = 2 ∙ (1𝜇𝑚)𝐶𝑔𝑑𝑛 + (1𝜇𝑚)𝐶𝑑𝑏𝑛 + 2 ∙ (3𝜇𝑚)𝐶𝑔𝑑𝑝 + (3𝜇𝑚)𝐶𝑑𝑏𝑝 = 17.7fF  
Multiplication by 2 due to Miller Effect 

 

𝐶𝑖𝑛 = (1𝜇𝑚) ∙ 𝐶𝑔𝑑𝑛 + (1𝜇𝑚) ∙ 𝐶𝑔𝑠𝑛 + (3𝜇𝑚) ∙ 𝐶𝑔𝑑𝑝 + (3𝜇𝑚) ∙ 𝐶𝑔𝑠𝑝 = 11.8fF 

 
𝐶𝑇 = 𝐶𝑝 + 𝐶𝑖𝑛 = 29.5 𝑓𝐹 

 

(No points deducted for not including Miller Effect.)          [20%] 
 

 

(d)  𝑡𝑝𝐿𝐻 is defined as the time it takes for the inverter output to get from low logic. 

 

For the sake of simplicity, assume that the transistor is always in the saturation mode. The 

average channel (pMOS source-drain) resistance, 𝑅𝑝, is calculated as  

3/1

1/1



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

4 

𝑅𝑝 =
𝑉𝑑𝑑

𝐼𝑝,𝑠𝑎𝑡 
, where 𝐼𝑝,𝑠𝑎𝑡 =

1

2
𝑘𝑝(𝑉𝑑𝑑 − |𝑉𝑇𝑝|)

2
 is the saturation current. 

The output voltage transition described by 

𝑉𝑜𝑢𝑡(𝑡) = (1 − 𝑒
−

𝑡
𝑅𝑝𝐶𝑡) 𝑉𝑑𝑑 , 

where we have assumed that the input inversion was made at 𝑡 = 0. Hence, the time for 

𝑉𝑜𝑢𝑡 to reach 𝑉𝑖𝑛𝑣 =
𝑉𝑑𝑑

2
 is given by 

𝑡𝑝𝐿𝐻 ≈ ln(2) 𝑅𝑝𝐶𝑇 = 0.7
𝐶𝑇𝑉𝑑𝑑

𝑘𝑃

2
(𝑉𝑑𝑑 − |𝑉𝑇𝑝|)

2
≈

𝐶𝑇𝑉𝑑𝑑

𝑘𝑃(𝑉𝑑𝑑 − |𝑉𝑇𝑝|)
2 ≈

𝐶𝑇

𝑘𝑃𝑉𝑑𝑑

 

 

𝑡𝑝𝐿𝐻 ≈
𝐶𝑇𝑉𝐷𝐷

𝑘𝑃(𝑉𝐷𝐷 − |𝑉𝑇𝑝|)
2 ≈ 26𝑝𝑠 

              [30%] 

 
 

 

 

 

Assessor’s comments: 

 

Popular question very well answered. Most were able to size the transistors and calculate 

the power. Some had difficulty in finding the intrinsic capacitances, while many attempted 

to calculate the low-to-high propagation delay by considering both linear and saturation 

regions instead of the simplifying assumption of using only the saturation region. There 

were several very good answers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

5 

3.  (a) Both CPLDs and FPGAs are based on logic blocks and programmable 

interconnects. However, CPLD’s logic blocks contain multiple macrocells (typically 4 to 

20) which provide product term arrays. FPGA’s logic blocks are made of logic elements 

(LEs), which consist of lookup tables (LUTs), registers, etc. Compared to macrocells they 

are much more configurable and provide several extra features to improve performance 

and minimize wasted logic resources. For example, the LUT is key to the creation of 

product functions out of combinational logic in a FPGA. The LUT replaces the product 

term array found in CPLDs. FPGAs use 4 or more-input LUTs to create complicated 

functions.  [10%] 

 

(b)  Any number of 5-variable functions can be implemented by using two 4-LUTs. For 

example, if we cascade the two 4-LUTs by connecting the output of one 4-LUT to an 

input of the other, then we can realize any function of the form 

 f = f1(x0, x1, x2, x3) + x4 

 f = f1(x0, x1, x2, x3) · x4.  

 [20%] 

 

 

(c) (i)  

 

1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 

 

 [20%] 

(ii)  Using the expression that defines the 4-to-1 multiplexer : 

 

𝑓 = 𝑠1̅𝑠0̅𝑥0 + 𝑠1̅𝑠0𝑥1 +  𝑠1𝑠0̅𝑥2 + 𝑠1𝑠0𝑥3 

 

one can write :  𝑔 = 𝑠1̅𝑠0̅𝑥0 + 𝑠1̅𝑠0𝑥1 and  ℎ = 𝑠1𝑠0̅𝑥2 + 𝑠1𝑠0𝑥3 

 

 

 
 [30%] 



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

6 

(d) Two LUTs can be used instead of 3. E.g. the first LUT decides between x0 and x1, 

and the second LUT between x2 and x3, but in this case information on s0 must be passed 

from the first LUT to the second LUT, i.e. term s0s1  

 

𝑘 = 𝑠1̅𝑠0̅𝑥0 + 𝑠1̅𝑠0𝑥1 + 𝑠1𝑠0 
 

𝑓 = 𝑠1̅𝑘 + 𝑠1�̅�𝑥2 + 𝑠1𝑘𝑥3 

= 𝑠1̅𝑠0̅𝑥0 + 𝑠1̅𝑠0𝑥1 +  𝑠1𝑠0̅𝑥2 + 𝑠1𝑠0𝑥3 

  

 

 

 

 [20%] 

 

 

 

 

Assessor’s comments: 

 

In this question almost everyone found reasonably straightforward LUT logic 

implementation. Most missed key differences between CPLDs and FPGAs, and hardly 

anyone could find the minimum number of LUTs in part (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

7 

4.  (a) EPROM and EEPROM are non-volatile memories, i.e. can retrieve stored 

information even after having been turned off and back on. This is the opposite of SRAM 

(volatile memory) which needs constant power to prevent data from being erased.  EPROMs 

can be reprogrammed by using UV light, in comparison to EEPROMs, which can be 

electrically reprogrammed.  [20%] 

(b) (i)  It is a Mealy configuration. The output depends on both present state (y) and 

primary inputs (x). This can be seen from the FSM output, i.e. the PROCESS (y, x) block 

in the VHDL code.  [20%] 

 

(ii) It is a sequence detector that produces z = 1 when the previous two values of x 

were 00 or 11; otherwise z = 0. 

 
 

 

 

 

 

 

 

 

 

 

                                             [40%] 

(iii) 

 

 

 

 

 

 

 

 

 

 

 [20%] 

 

 

Assessor’s comments: 

 

 

Present 

state 

 

Q1Q2 

 

Next state  

for Q1Q2 

 

 x=0   x=1 

 

Output 

 

 

x=0   x=1 

A       00        

B       01                         

C       11     

D       10 

  01    11 

  01    11 

  01    11 

  --      -- 

0      0 

1      0 

0      1 

-      - 

0 1 

0 1 

0 1 

x x 

1 1 

1 1 

1 1 

x x 

0 0 

1 0 

0 1 

x x 

Q1Q2 

D1 = x 

x 

D2 = 1 Output = �̅�𝑄1
̅̅ ̅𝑄2 + 𝑥𝑄1 



2018 – Part IIA Module 3B2 – Integrated Digital Electronics – v2 

8 

The most popular question, with high marks in general. Lots of people did not know how 

to compare various programming technologies. The VHDL question was answered very 

well by most although very few were able to describe its functionality. 


