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All questions carry the same number of marks.
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1 A thin square plate ABCD of side 2a and mass 2m is shown in Fig. 1. At corners A
and C are attached two rods each of length 2a and mass m as shown in the figure.

(a) For the plate ABCD alone find the principal moments of inertia using x, y and z axes
as shown. In what sense can the plate be said to resemble a circular disc? [25%]

(b) Find the inertia matrix of the assembly at the centre-of-mass G using x, y and z axes.
[40%]

(c) Find the principal moments of inertia of the assembly at G and show that the plate
diagonal BD is one of the principal axes. [30%]

(d) In what sense is the assembly equivalent to a cylinder? [5%]
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2 The symmetrical rotor shown in Fig. 2 has mass m and principal moments of inertia
AAC about axes passing through the fixed point O. The distance from O to the centre of
mass G of the rotor is a. The rotor is spinning with a steady fast angular velocity ω and it
is held initially with its axis inclined at a small angle α1 from the horizontal as shown in
Fig. 2(a). The acceleration due to gravity is g.

In a particular experiment the rotor is released and descends to a small angle α2 below
the horizontal as shown in Fig. 2(b). Thereafter oscillations continue, a motion similar to
that observed in the 3C5 laboratory, finally dying out to give steady precession with the
axis horizontal as shown in Fig. 2(c).

(a) Find an expression for the final precession rate. [10%]

(b) Show that the moment of momentum of the rotor about a vertical axis through O
remains constant at a value of mgaA/Cω throughout the motion. [10%]

(c) Find an expression for the small angle α1. [30%]

(d) Find α2 in terms of α1, assuming energy is conserved in the early motion, and find
an expression for the speed of G when the rotor is at its lowest point. [50%]
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3 Two celestial bodies of mass m1 and m2 are moving in a plane as shown in Fig. 3.
The positions of the bodies are described by the polar coordinates r1,r2,θ1 and θ2 and the
distance between the bodies is denoted by r . The gravitational potential energy is given
by V =−Gm1m2/r where G is the gravitational constant.

(a) By using Lagrange’s equation, employing the gravitational potential energy, show
that the equations of motion for r1 and θ1 are

m1r̈1 −m1r1θ̇
2
1 +

(
Gm1m2

r2

)(
r1 − r2 cos(θ2 −θ1)

r

)
= 0

d
dt

(
m1r2

1θ̇1

)
−
(

Gm1m2
r2

)(
r1r2 sin(θ2 −θ1)

r

)
= 0

Also derive the equations of motion for r2 and θ2. [50%]

(b) Linear momentum is conserved, and this means that without loss of generality the
origin of the coordinate system can be taken to be the centre of mass of the system,
in which case m1r1 = m2r2 and θ2 = θ1 + π . The motion of the system can then be
expressed in terms of two degrees of freedom (a,θ ) where a = r1 and θ = θ1 . By using
your existing equations, derive the equations of motion for a and θ . [30%]

(c) Show from the equation of motion for θ that angular momentum is conserved. [10%]

(d) Derive an expression for the period of the motion when m1 has a circular orbit of
radius A. [10%]
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4 A thin hoop of mass m and radius a is rolling in a vertical plane without slip inside
a fixed vertical circular track of radius R, as shown in Fig. 4. The centre of the hoop is at
G and the centre of the track is at O. Motion of the hoop under the action of gravity and a
horizontal force F acting at G is described by the angle θ between OG and the vertical.

(a) Using the the datasheet formula Q(e) = ḣP + ṙP ×p, where P is the contact point
between the hoop and the track, find the equation of motion for the hoop. [40%]

(b) Use Lagrange’s equation to find the same equation of motion. [30%]

(c) For the case F = mg find the natural frequency of small vibration about the
equilibrium position. [30%]
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 Part IIA Data sheet  
Module 3C5 Dynamics 
Module 3C6 Vibration 

 
DYNAMICS IN THREE DIMENSIONS 

Axes fixed in direction 
(a)  Linear momentum for a general collection of particles mi : 

  
dp
dt   = F(e) 

where p = M vG, M is the total mass, vG is the velocity of the centre of mass and F(e) the 
total external force applied to the system. 

(b) Moment of momentum about a general point P 
  Q(e) = (rG – rP) × ṗ  + ḣ G 
          = ḣ P + ṙ P × p  
where Q(e) is the total moment of external forces about P.  Here, hP and hG are the 
moments of momentum about P and G respectively, so that for example 

  hP = (ri − rP )×mi ri
i
∑  

       = hG + (rG – rP) × p  
where the summation is over all the mass particles making up the system. 

(c) For a rigid body rotating with angular velocity ω  about a fixed point P at the origin of 
coordinates 

  hP = 

€ 

r × (ω × r)dm∫ =  I ω  

where the integral is taken over the volume of the body, and where 

  I = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤A -F -E

-F B -D
-E -D C

 ,  ω  = 
⎣
⎢
⎡

⎦
⎥
⎤ωx

ωy
ωz

 ,  r = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤x

y
z

 , 

and A = ∫(y2 + z2)dm  B = ∫(z2 + x2)dm  C = ∫(x2 + y2)dm 

  D = ∫yz dm   E =∫zx dm   F = ∫xy dm 
where all integrals are taken over the volume of the body. 

 
Axes rotating with angular velocity Ω  
 Time derivatives of vectors must be replaced by the “rotating frame” form, so that for 

example 
  ṗ  + Ω  × p = F(e) 
where the time derivative is evaluated in the moving reference frame. 

 When the rate of change of the position vector r is needed, as in 1(b) above, it is usually 
easiest to calculate velocity components directly in the required directions of the axes.  
Application of the general formula needs an extra term unless the origin of the frame is 
fixed. 
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Euler’s dynamic equations (governing the angular motion of a rigid body) 
(a) Body-fixed reference frame: 

  A ω̇ 1 – (B – C) ω2 ω3  =  Q1 
  B ω̇ 2 – (C – A) ω3 ω1  =  Q2 
  C ω̇ 3 – (A – B) ω1 ω2  =  Q3 
where A, B and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass.  The angular velocity of the body is ω  = [ω1, ω2, ω3] and 
the moment about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the 
principal axes of inertia of the body at P. 

(b)  Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"): 
  A Ω̇ 1 – (A Ω3 – C ω3) Ω2   =  Q1 

  A Ω̇ 2 + (A Ω3 – C ω3) Ω1  =  Q2 
  C ω̇ 3   =  Q3 
where A, A and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass.  The angular velocity of the body is  ω  = [ω1, ω2, ω3] and 
the moment about P of external forces is  Q = [Q1, Q2, Q3]  using axes  such that  ω3  
and  Q3  are aligned with the symmetry axis of the body.  The reference frame (not fixed 
in the body) rotates with angular velocity  Ω  = [Ω1, Ω2, Ω3]   with  Ω1=ω1 and Ω2=ω2. 

 
Lagrange’s equations 
For a holonomic system with generalised coordinates qi 

  
d
dt ⎣
⎢
⎡

⎦
⎥
⎤∂T

∂q̇i
  – 

∂T
∂qi

  + 
∂V
∂qi

   =  Qi 

where T  is the total kinetic energy, V  is the total potential energy, and  Qi are the non-
conservative generalised forces. 
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VIBRATION MODES AND RESPONSE 
Discrete systems Continuous systems 

1.  The forced vibration of an N-degree-of-
freedom system with mass matrix M and 
stiffness matrix K (both symmetric and 
positive definite) is 

€ 

M ˙ ̇ y + K y = f  

where y is the vector of generalised 
displacements and f is the vector of 
generalised forces. 

The forced vibration of a continuous system 
is determined by solving a partial differential 
equation: see p. 6 for examples. 

2.  Kinetic energy 

€ 

T =
1
2

˙ y t M ˙ y 
 

 
 
    Potential energy 

€ 

V =
1
2
ytK y  

 

T =
1
2

˙ u 2dm∫  

where the integral is with respect to mass 
(similar to moments and products of inertia). 
 
See p. 4 for examples. 

3.  The natural frequencies 

€ 

ωn  and  
corresponding mode shape vectors 

€ 

u(n)  
satisfy 

 

€ 

Ku n( ) =ωn
2Mu n( )  . 

The natural frequencies 

€ 

ωn and  mode 
shapes 

€ 

un (x) are found by solving the 
appropriate differential equation (see p. 4) 
and boundary conditions, assuming 
harmonic time dependence. 

4.  Orthogonality and normalisation 

u j( )tMu k( ) =
0,      j ≠ k
1,      j = k
" 
# 
$ % 

 

u j( )tKu k( ) =
0,      j ≠ k
ωn

2,     j = k
# 
$ 
% 

& % 
 

 

 

uj (x ) uk (x) dm∫ =
0,      j ≠ k
1,     j = k
# 
$ 
% & 

 

5.  General response 
The general response of the system can be 
written as a sum of modal responses 

€ 

y(t) = q j (t) u
( j)

j=1

N
∑ =Uq(t) 

where U is a matrix whose N columns are 
the normalised eigenvectors 

€ 

u j( ) and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 

 
The general response of the system can be 
written as a sum of modal responses 

€ 

w(x, t) = q j (t) u j (x)
j
∑  

where w(x, t)  is the displacement and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 
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6.  Modal coordinates q satisfy 

€ 

˙ ̇ q + diag(ω j
2)[ ] q = Q 

where 

€ 

y =Uq  and the modal force vector 

 

€ 

Q =Ut f  . 

Each modal amplitude 

€ 

q j (t)  satisfies 

€ 

˙ ̇ q j +ω j
2 q j = Qj  

where 

€ 

Qj = f (x, t) u j (x) dm∫  and 

€ 

f (x, t) is 
the external applied force distribution. 

7.  Frequency response function 
For input generalised force 

€ 

f j  at frequency 
ω and measured generalised displacement 

€ 

yk   the transfer function is 

€ 

H j,k,ω( ) =
yk
f j

=
u j

n( )uk
n( )

ωn
2 −ω2n=1

N
∑    

(with no damping), or 

 
For force F  at frequency ω applied at point  
x, and displacement w  measured at point y, 
the transfer function is 

H x,y,ω( ) =
w
F
=

un(x) un(y)
ωn

2 − ω 2n
∑    

(with no damping), or 

€ 

H j,k,ω( ) =
yk
f j
≈

u j
n( )uk

n( )

ωn
2 + 2iωωnζn −ω

2
n=1

N
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

H x,y,ω( ) =
w
F
≈

un(x) un (y)
ωn

2 + 2iωωnζn −ω
2

n
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

8.  Pattern of antiresonances 
For a system with well-separated resonances 
(low modal overlap), if the factor uj

n( )uk
n( )   

has the same sign for two adjacent 
resonances then the transfer function will 
have an antiresonance between the two 
peaks.  If it has opposite sign, there will be 
no antiresonance. 

 
For a system with low modal overlap, if the 
factor un(x) un(y)   has the same sign for two 
adjacent resonances then the transfer 
function will have an antiresonance between 
the two peaks.  If it has opposite sign, there 
will be no antiresonance. 

9.  Impulse response  
For a unit impulsive generalised force 

€ 

f j = δ(t) the measured response 

€ 

yk  is given 
by 

€ 

g j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

g j,k,t( ) ≈
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt e

−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit impulse applied at t = 0 at point x, 
the response at point  y  is 

g x, y, t( ) = un(x) un (y)
ωnn

∑ sinωnt    

for 

€ 

t ≥ 0 (with no damping), or 

g x, y, t( ) ≈ un(x) un(y)
ω nn

∑ sinωnt e
−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 
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10.  Step response  
For a unit step generalised force 

€ 

f j =
0 t < 0
1 t ≥ 0
# 
$ 
% 

 the measured response 

€ 

yk  is 

given by 

€ 

h j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt[ ]  

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h j,k,t( ) ≈
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt e

−ωnζnt[ ]
 

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit step force applied at t = 0 at point 
x, the response at point y  is 

€ 

h x,y,t( ) =
un (x) un (y)

ωn
2

n
∑ 1− cosωnt[ ]   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h t( ) ≈ un (x) un (y)
ωn
2

n
∑ 1− cosωnt e

−ωnζnt[ ]   

for 

€ 

t ≥ 0 (with small damping). 

 
 
Rayleigh’s principle for small vibrations 

The “Rayleigh quotient” for a discrete system is

€ 

V
˜ T 

=
ytK y
yt M y

 where 

€ 

y  is the vector of 

generalised coordinates, M is the mass matrix and K is the stiffness matrix.  The equivalent 
quantity for a continuous system is defined using the energy expressions on p. 6. 
If this quantity is evaluated with any  vector

€ 

y , the result will be 

(1)  ≥ the smallest squared frequency; 
(2)  ≤ the largest squared frequency; 

(3)  a  good approximation to

€ 

ωk
2 if 

€ 

y  is an approximation to 

€ 

u k( ).  

 (Formally,  

€ 

V
˜ T 

 is stationary  near each mode.) 
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS 
 

Transverse vibration of a stretched string 
 
Tension P, mass per unit length m, transverse displacement w(x, t) , applied lateral force 
f (x, t)  per unit length. 

 
 Equation of motion Potential energy Kinetic energy 

 m ∂ 2w
∂t2

− P
∂ 2w
∂x2

= f (x, t)  V =
1
2
P

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
m

∂w
∂ t

" 

# 
$ 

% 

& 
' 
2
dx∫  

 
 
 
Torsional vibration of a circular shaft 
 
Shear modulus G, density ρ , external radius a, internal radius b  if shaft is hollow, angular 
displacement θ(x,t) , applied torque f (x, t)  per unit length. 
Polar moment of area is J = π / 2( ) a4 − b4( ) . 
 
 Equation of motion Potential energy Kinetic energy 

 ρJ ∂
2θ

∂t 2
−GJ

∂2θ

∂x2
= f (x, t ) V =

1
2
GJ

∂θ
∂x

# 

$ 
% 

& 

' 
( 
2
dx∫  T =

1
2
ρJ

∂θ
∂ t

$ 

% 
& 

' 

( 
) 
2
dx∫  

 
 
 
Axial vibration of a rod or column 
 
Young’s modulus E, density ρ , cross-sectional area A, axial displacement w(x, t) , applied 
axial force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

− EA
∂ 2w
∂x2

= f (x, t)  V =
1
2
EA

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
 
 
Bending vibration of an Euler beam 
 
Young’s modulus E, density ρ , cross-sectional area A, second moment of area of cross-
section I,  transverse displacement w(x, t) , applied transverse force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

+ EI
∂ 4w
∂x4

= f (x,t)  V =
1
2
EI

∂2w
∂x2

" 

# 
$ 
$ 

% 

& 
' 
' 

2

dx∫  T =
1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
Note that values of I  can be found in the Mechanics Data Book. 
 


