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ENGINEERING TRIPOS PART IIA

Tuesday 1 May 2018 9.30 to 11.10

Module 3C6

VIBRATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 3C5 Dynamics and 3C6 Vibration data sheet (6 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) A vertical uniform column of length L has Young’s modulus E, density ρ ,
and cross-sectional area A. The column is fixed at the top (z = 0) and bottom (z = L) as
shown in Fig. 1(a). The effect of the column’s self-weight on its axial deflection can be
neglected for the whole of this question.

(i) Write down an expression for the mode shapes of axial vibration of the
column and sketch the first three mode shapes. [10%]

(ii) A second column of half the length, but which is otherwise identical, is fixed
at the top (z = 0) and is free at its end (z = L/2). Sketch the first three mode shapes
of this column and identify how they relate to the mode shapes in part (i). [20%]

(b) The half-length column is used to support a mass M as shown in Fig. 1(b). The
column and mass are initially at rest, when suddenly the connection between the column
and the mass fails at time t = 0 such that the mass falls freely. The general solution y(z, t)
for axial vibration of a column can be written in terms of two components y1 and y2:

y(z, t) = y1(z− ct)+ y2(z+ ct)

(i) What is the physical interpretation of y1 and y2, and what is c in terms of the
properties of the column? [10%]

(ii) What are the initial conditions y(z, t) and ẏ(z, t) of the half-length column at
time t = 0? Note that the static axial stiffness of a column of length L is given by
EA/L. [5%]

(iii) If the initial conditions for the full-length column were identical to the half-
length column for 0 < z < L/2 and symmetrical about z = L/2, justify why the
response of the two columns would be identical for 0 < z < L/2. [10%]

(iv) By considering the equivalent initial conditions for the full-length column
derive an expression for the initial functions y1(z) and y2(z) at time t = 0. [10%]

(v) Using the results above and by considering the boundary conditions of the
equivalent full-length column at z = 0 and z = L find conditions on y1 and y2 that
determine the transient response. [20%]

(vi) Sketch the axial displacement y(z) at times t = 0, t = 0.25L/c, and t = 0.5L/c
for the half-length column after the mass has been released. [15%]
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(a) (b)

Fig. 1

Page 3 of 8 (TURN OVER



Version TB/3

2 A beam of length L is shown in Fig. 2(a). The beam is made from a material with
Young’s modulus E and density ρ , and the cross-section of the beam has a second moment
of area I.

(a) The beam is pinned at x = 0 and free at x = L, and the lateral deflection of the beam
is y = y(x, t).

(i) Starting from the equation of motion for a beam, derive an expression whose
solutions give the wavenumbers kn for the modes of the beam. [30%]

(ii) Sketch the mode shapes corresponding to the first three natural frequencies. [20%]

(b) A spring of stiffness k connects the same beam at x = L to ground as shown in
Fig. 2(b).

(i) Using a transfer function approach derive an equation whose solutions give
the natural frequencies of the modified system, in terms of the spring constant k,
and the original mode shapes un(x) and natural frequencies ωn of the unmodified
beam. [20%]

(ii) Using the function u(x) = x as an estimate for the first mode shape, use
Rayleigh’s principle to derive an approximate expression for the first natural
frequency of the combined system. Comment on the validity of the assumed mode
shape function. [20%]

(iii) Sketch the mode shapes for the first three modes of the modified system for
the case when the stiffness is large, i.e. k→ ∞. [10%]

(a) (b)

Fig. 2
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3 Two uniform disks ‘1’ and ‘2’, of radius R and mass m roll without slip on a
horizontal table as shown in Fig. 3. They are connected together and to a rigid wall
by two springs of stiffness k, through frictionless bearings at the centre of each disk. The
displacements of the two disks from equilibrium are y1 and y2.

(a) Write expressions for the kinetic and potential energies of the system. Hence derive
the mass and stiffness matrices. [25%]

(b) Calculate the natural frequencies and natural mode shapes of the system. [25%]

(c) Disk 1 is rolled (without slip) clockwise through 45◦ from its equilibrium position
while disk 2 is held in its original equilibrium position. The two disks are then released
simultaneously from rest. Calculate the angle of rotation from the original equilibrium
position of disk 1 at time t =

√
m/k after the release. [25%]

(d) The stiffness of the spring connecting the two disks is increased by 20%. Use
Rayleigh’s principle to revise your answer to part (c) for the new system. [25%]

 

k k 

y1 y2 

m m R 

1 2 

Fig. 3
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4 A model of the vertical vibration of the wings of an aircraft is shown in Fig. 4. A
mass of 4m, representing the fuselage, is constrained to move vertically with displacement
y and without rotation. It is frictionlessly-pinned to two inner wing segments, modelled
as uniform bars of length L and mass 2m and connected to the fuselage by an effective
rotational stiffness of 2k. The inner wing segments are frictionlessly-pinned to two outer
wing segments of mass m and length L, connected by an effective rotational stiffness k.
Vibration of the wing segments is described by angles θ1, θ2, θ3, and θ4 to the horizontal
as shown in Fig. 4(b).

(a) Write equations for the potential energy and the kinetic energy for small vertical
vibration of the system. [25%]

(b) Sketch the natural mode shapes for small vertical vibration. [25%]

(c) Which mode shape do you expect to have the lowest non-zero natural frequency?
Justify your answer. [10%]

(d) A sinusoidal vertical force x(t) = X sinωt is applied to the right wing tip. Sketch
a graph of the amplitude of the displacement response of the fuselage y as a function of
frequency ω . Use a dB scale. [25%]

(e) Using Rayleigh’s principle, or otherwise, estimate the lowest non-zero natural
frequency of vibration. [15%]
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 Part IIA Data sheet  
Module 3C5 Dynamics 
Module 3C6 Vibration 

 
DYNAMICS IN THREE DIMENSIONS 

Axes fixed in direction 
(a)  Linear momentum for a general collection of particles mi : 

  
dp
dt   = F(e) 

where p = M vG, M is the total mass, vG is the velocity of the centre of mass and F(e) the 
total external force applied to the system. 

(b) Moment of momentum about a general point P 
  Q(e) = (rG – rP) × ṗ  + ḣ G 
          = ḣ P + ṙ P × p  
where Q(e) is the total moment of external forces about P.  Here, hP and hG are the 
moments of momentum about P and G respectively, so that for example 

  hP = (ri − rP )×mi ri
i
∑  

       = hG + (rG – rP) × p  
where the summation is over all the mass particles making up the system. 

(c) For a rigid body rotating with angular velocity ω  about a fixed point P at the origin of 
coordinates 

  hP = 

€ 

r × (ω × r)dm∫ =  I ω  

where the integral is taken over the volume of the body, and where 

  I = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤A -F -E

-F B -D
-E -D C

 ,  ω  = 
⎣
⎢
⎡

⎦
⎥
⎤ωx

ωy
ωz

 ,  r = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤x

y
z

 , 

and A = ∫(y2 + z2)dm  B = ∫(z2 + x2)dm  C = ∫(x2 + y2)dm 

  D = ∫yz dm   E =∫zx dm   F = ∫xy dm 
where all integrals are taken over the volume of the body. 

 
Axes rotating with angular velocity Ω  
 Time derivatives of vectors must be replaced by the “rotating frame” form, so that for 

example 
  ṗ  + Ω  × p = F(e) 
where the time derivative is evaluated in the moving reference frame. 

 When the rate of change of the position vector r is needed, as in 1(b) above, it is usually 
easiest to calculate velocity components directly in the required directions of the axes.  
Application of the general formula needs an extra term unless the origin of the frame is 
fixed. 
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Euler’s dynamic equations (governing the angular motion of a rigid body) 
(a) Body-fixed reference frame: 

  A ω̇ 1 – (B – C) ω2 ω3  =  Q1 
  B ω̇ 2 – (C – A) ω3 ω1  =  Q2 
  C ω̇ 3 – (A – B) ω1 ω2  =  Q3 
where A, B and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass.  The angular velocity of the body is ω  = [ω1, ω2, ω3] and 
the moment about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the 
principal axes of inertia of the body at P. 

(b)  Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"): 
  A Ω̇ 1 – (A Ω3 – C ω3) Ω2   =  Q1 

  A Ω̇ 2 + (A Ω3 – C ω3) Ω1  =  Q2 
  C ω̇ 3   =  Q3 
where A, A and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass.  The angular velocity of the body is  ω  = [ω1, ω2, ω3] and 
the moment about P of external forces is  Q = [Q1, Q2, Q3]  using axes  such that  ω3  
and  Q3  are aligned with the symmetry axis of the body.  The reference frame (not fixed 
in the body) rotates with angular velocity  Ω  = [Ω1, Ω2, Ω3]   with  Ω1=ω1 and Ω2=ω2. 

 
Lagrange’s equations 
For a holonomic system with generalised coordinates qi 

  
d
dt ⎣
⎢
⎡

⎦
⎥
⎤∂T

∂q̇i
  – 

∂T
∂qi

  + 
∂V
∂qi

   =  Qi 

where T  is the total kinetic energy, V  is the total potential energy, and  Qi are the non-
conservative generalised forces. 
 



3C5 / 3C6 data sheet 3 HEMH/RSL/DC/JW 2012 

VIBRATION MODES AND RESPONSE 
Discrete systems Continuous systems 

1.  The forced vibration of an N-degree-of-
freedom system with mass matrix M and 
stiffness matrix K (both symmetric and 
positive definite) is 

€ 

M ˙ ̇ y + K y = f  

where y is the vector of generalised 
displacements and f is the vector of 
generalised forces. 

The forced vibration of a continuous system 
is determined by solving a partial differential 
equation: see p. 6 for examples. 

2.  Kinetic energy 

€ 

T =
1
2

˙ y t M ˙ y 
 

 
 
    Potential energy 

€ 

V =
1
2
ytK y  

 

T =
1
2

˙ u 2dm∫  

where the integral is with respect to mass 
(similar to moments and products of inertia). 
 
See p. 4 for examples. 

3.  The natural frequencies 

€ 

ωn  and  
corresponding mode shape vectors 

€ 

u(n)  
satisfy 

 

€ 

Ku n( ) =ωn
2Mu n( )  . 

The natural frequencies 

€ 

ωn and  mode 
shapes 

€ 

un (x) are found by solving the 
appropriate differential equation (see p. 4) 
and boundary conditions, assuming 
harmonic time dependence. 

4.  Orthogonality and normalisation 

u j( )tMu k( ) =
0,      j ≠ k
1,      j = k
" 
# 
$ % 

 

u j( )tKu k( ) =
0,      j ≠ k
ωn

2,     j = k
# 
$ 
% 

& % 
 

 

 

uj (x ) uk (x) dm∫ =
0,      j ≠ k
1,     j = k
# 
$ 
% & 

 

5.  General response 
The general response of the system can be 
written as a sum of modal responses 

€ 

y(t) = q j (t) u
( j)

j=1

N
∑ =Uq(t) 

where U is a matrix whose N columns are 
the normalised eigenvectors 

€ 

u j( ) and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 

 
The general response of the system can be 
written as a sum of modal responses 

€ 

w(x, t) = q j (t) u j (x)
j
∑  

where w(x, t)  is the displacement and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 
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6.  Modal coordinates q satisfy 

€ 

˙ ̇ q + diag(ω j
2)[ ] q = Q 

where 

€ 

y =Uq  and the modal force vector 

 

€ 

Q =Ut f  . 

Each modal amplitude 

€ 

q j (t)  satisfies 

€ 

˙ ̇ q j +ω j
2 q j = Qj  

where 

€ 

Qj = f (x, t) u j (x) dm∫  and 

€ 

f (x, t) is 
the external applied force distribution. 

7.  Frequency response function 
For input generalised force 

€ 

f j  at frequency 
ω and measured generalised displacement 

€ 

yk   the transfer function is 

€ 

H j,k,ω( ) =
yk
f j

=
u j

n( )uk
n( )

ωn
2 −ω2n=1

N
∑    

(with no damping), or 

 
For force F  at frequency ω applied at point  
x, and displacement w  measured at point y, 
the transfer function is 

H x,y,ω( ) =
w
F
=

un(x) un(y)
ωn

2 − ω 2n
∑    

(with no damping), or 

€ 

H j,k,ω( ) =
yk
f j
≈

u j
n( )uk

n( )

ωn
2 + 2iωωnζn −ω

2
n=1

N
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

H x,y,ω( ) =
w
F
≈

un(x) un (y)
ωn

2 + 2iωωnζn −ω
2

n
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

8.  Pattern of antiresonances 
For a system with well-separated resonances 
(low modal overlap), if the factor uj

n( )uk
n( )   

has the same sign for two adjacent 
resonances then the transfer function will 
have an antiresonance between the two 
peaks.  If it has opposite sign, there will be 
no antiresonance. 

 
For a system with low modal overlap, if the 
factor un(x) un(y)   has the same sign for two 
adjacent resonances then the transfer 
function will have an antiresonance between 
the two peaks.  If it has opposite sign, there 
will be no antiresonance. 

9.  Impulse response  
For a unit impulsive generalised force 

€ 

f j = δ(t) the measured response 

€ 

yk  is given 
by 

€ 

g j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

g j,k,t( ) ≈
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt e

−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit impulse applied at t = 0 at point x, 
the response at point  y  is 

g x, y, t( ) = un(x) un (y)
ωnn

∑ sinωnt    

for 

€ 

t ≥ 0 (with no damping), or 

g x, y, t( ) ≈ un(x) un(y)
ω nn

∑ sinωnt e
−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 
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10.  Step response  
For a unit step generalised force 

€ 

f j =
0 t < 0
1 t ≥ 0
# 
$ 
% 

 the measured response 

€ 

yk  is 

given by 

€ 

h j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt[ ]  

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h j,k,t( ) ≈
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt e

−ωnζnt[ ]
 

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit step force applied at t = 0 at point 
x, the response at point y  is 

€ 

h x,y,t( ) =
un (x) un (y)

ωn
2

n
∑ 1− cosωnt[ ]   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h t( ) ≈ un (x) un (y)
ωn
2

n
∑ 1− cosωnt e

−ωnζnt[ ]   

for 

€ 

t ≥ 0 (with small damping). 

 
 
Rayleigh’s principle for small vibrations 

The “Rayleigh quotient” for a discrete system is

€ 

V
˜ T 

=
ytK y
yt M y

 where 

€ 

y  is the vector of 

generalised coordinates, M is the mass matrix and K is the stiffness matrix.  The equivalent 
quantity for a continuous system is defined using the energy expressions on p. 6. 
If this quantity is evaluated with any  vector

€ 

y , the result will be 

(1)  ≥ the smallest squared frequency; 
(2)  ≤ the largest squared frequency; 

(3)  a  good approximation to

€ 

ωk
2 if 

€ 

y  is an approximation to 

€ 

u k( ).  

 (Formally,  

€ 

V
˜ T 

 is stationary  near each mode.) 
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS 
 

Transverse vibration of a stretched string 
 
Tension P, mass per unit length m, transverse displacement w(x, t) , applied lateral force 
f (x, t)  per unit length. 

 
 Equation of motion Potential energy Kinetic energy 

 m ∂ 2w
∂t2

− P
∂ 2w
∂x2

= f (x, t)  V =
1
2
P

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
m

∂w
∂ t

" 

# 
$ 

% 

& 
' 
2
dx∫  

 
 
 
Torsional vibration of a circular shaft 
 
Shear modulus G, density ρ , external radius a, internal radius b  if shaft is hollow, angular 
displacement θ(x,t) , applied torque f (x, t)  per unit length. 
Polar moment of area is J = π / 2( ) a4 − b4( ) . 
 
 Equation of motion Potential energy Kinetic energy 

 ρJ ∂
2θ

∂t 2
−GJ

∂2θ

∂x2
= f (x, t ) V =

1
2
GJ

∂θ
∂x

# 

$ 
% 

& 

' 
( 
2
dx∫  T =

1
2
ρJ

∂θ
∂ t

$ 

% 
& 

' 

( 
) 
2
dx∫  

 
 
 
Axial vibration of a rod or column 
 
Young’s modulus E, density ρ , cross-sectional area A, axial displacement w(x, t) , applied 
axial force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

− EA
∂ 2w
∂x2

= f (x, t)  V =
1
2
EA

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
 
 
Bending vibration of an Euler beam 
 
Young’s modulus E, density ρ , cross-sectional area A, second moment of area of cross-
section I,  transverse displacement w(x, t) , applied transverse force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

+ EI
∂ 4w
∂x4

= f (x,t)  V =
1
2
EI

∂2w
∂x2

" 

# 
$ 
$ 

% 

& 
' 
' 

2

dx∫  T =
1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
Note that values of I  can be found in the Mechanics Data Book. 
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 Part IIA Data sheet  
Module 3C5 Dynamics 
Module 3C6 Vibration 

 
DYNAMICS IN THREE DIMENSIONS 

Axes fixed in direction 
(a)  Linear momentum for a general collection of particles mi : 

  
dp
dt   = F(e) 

where p = M vG, M is the total mass, vG is the velocity of the centre of mass and F(e) the 
total external force applied to the system. 

(b) Moment of momentum about a general point P 
  Q(e) = (rG – rP) × ṗ  + ḣ G 
          = ḣ P + ṙ P × p  
where Q(e) is the total moment of external forces about P.  Here, hP and hG are the 
moments of momentum about P and G respectively, so that for example 

  hP = (ri − rP )×mi ri
i
∑  

       = hG + (rG – rP) × p  
where the summation is over all the mass particles making up the system. 

(c) For a rigid body rotating with angular velocity ω  about a fixed point P at the origin of 
coordinates 

  hP = 

€ 

r × (ω × r)dm∫ =  I ω  

where the integral is taken over the volume of the body, and where 

  I = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤A -F -E

-F B -D
-E -D C

 ,  ω  = 
⎣
⎢
⎡

⎦
⎥
⎤ωx

ωy
ωz

 ,  r = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤x

y
z

 , 

and A = ∫(y2 + z2)dm  B = ∫(z2 + x2)dm  C = ∫(x2 + y2)dm 

  D = ∫yz dm   E =∫zx dm   F = ∫xy dm 
where all integrals are taken over the volume of the body. 

 
Axes rotating with angular velocity Ω  
 Time derivatives of vectors must be replaced by the “rotating frame” form, so that for 

example 
  ṗ  + Ω  × p = F(e) 
where the time derivative is evaluated in the moving reference frame. 

 When the rate of change of the position vector r is needed, as in 1(b) above, it is usually 
easiest to calculate velocity components directly in the required directions of the axes.  
Application of the general formula needs an extra term unless the origin of the frame is 
fixed. 
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Euler’s dynamic equations (governing the angular motion of a rigid body) 
(a) Body-fixed reference frame: 

  A ω̇ 1 – (B – C) ω2 ω3  =  Q1 
  B ω̇ 2 – (C – A) ω3 ω1  =  Q2 
  C ω̇ 3 – (A – B) ω1 ω2  =  Q3 
where A, B and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass.  The angular velocity of the body is ω  = [ω1, ω2, ω3] and 
the moment about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the 
principal axes of inertia of the body at P. 

(b)  Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"): 
  A Ω̇ 1 – (A Ω3 – C ω3) Ω2   =  Q1 

  A Ω̇ 2 + (A Ω3 – C ω3) Ω1  =  Q2 
  C ω̇ 3   =  Q3 
where A, A and C are the principal moments of inertia about P which is either at a fixed 
point or at the centre of mass.  The angular velocity of the body is  ω  = [ω1, ω2, ω3] and 
the moment about P of external forces is  Q = [Q1, Q2, Q3]  using axes  such that  ω3  
and  Q3  are aligned with the symmetry axis of the body.  The reference frame (not fixed 
in the body) rotates with angular velocity  Ω  = [Ω1, Ω2, Ω3]   with  Ω1=ω1 and Ω2=ω2. 

 
Lagrange’s equations 
For a holonomic system with generalised coordinates qi 

  
d
dt ⎣
⎢
⎡

⎦
⎥
⎤∂T

∂q̇i
  – 

∂T
∂qi

  + 
∂V
∂qi

   =  Qi 

where T  is the total kinetic energy, V  is the total potential energy, and  Qi are the non-
conservative generalised forces. 
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VIBRATION MODES AND RESPONSE 
Discrete systems Continuous systems 

1.  The forced vibration of an N-degree-of-
freedom system with mass matrix M and 
stiffness matrix K (both symmetric and 
positive definite) is 

€ 

M ˙ ̇ y + K y = f  

where y is the vector of generalised 
displacements and f is the vector of 
generalised forces. 

The forced vibration of a continuous system 
is determined by solving a partial differential 
equation: see p. 6 for examples. 

2.  Kinetic energy 

€ 

T =
1
2

˙ y t M ˙ y 
 

 
 
    Potential energy 

€ 

V =
1
2
ytK y  

 

T =
1
2

˙ u 2dm∫  

where the integral is with respect to mass 
(similar to moments and products of inertia). 
 
See p. 4 for examples. 

3.  The natural frequencies 

€ 

ωn  and  
corresponding mode shape vectors 

€ 

u(n)  
satisfy 

 

€ 

Ku n( ) =ωn
2Mu n( )  . 

The natural frequencies 

€ 

ωn and  mode 
shapes 

€ 

un (x) are found by solving the 
appropriate differential equation (see p. 4) 
and boundary conditions, assuming 
harmonic time dependence. 

4.  Orthogonality and normalisation 

u j( )tMu k( ) =
0,      j ≠ k
1,      j = k
" 
# 
$ % 

 

u j( )tKu k( ) =
0,      j ≠ k
ωn

2,     j = k
# 
$ 
% 

& % 
 

 

 

uj (x ) uk (x) dm∫ =
0,      j ≠ k
1,     j = k
# 
$ 
% & 

 

5.  General response 
The general response of the system can be 
written as a sum of modal responses 

€ 

y(t) = q j (t) u
( j)

j=1

N
∑ =Uq(t) 

where U is a matrix whose N columns are 
the normalised eigenvectors 

€ 

u j( ) and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 

 
The general response of the system can be 
written as a sum of modal responses 

€ 

w(x, t) = q j (t) u j (x)
j
∑  

where w(x, t)  is the displacement and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 
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6.  Modal coordinates q satisfy 

€ 

˙ ̇ q + diag(ω j
2)[ ] q = Q 

where 

€ 

y =Uq  and the modal force vector 

 

€ 

Q =Ut f  . 

Each modal amplitude 

€ 

q j (t)  satisfies 

€ 

˙ ̇ q j +ω j
2 q j = Qj  

where 

€ 

Qj = f (x, t) u j (x) dm∫  and 

€ 

f (x, t) is 
the external applied force distribution. 

7.  Frequency response function 
For input generalised force 

€ 

f j  at frequency 
ω and measured generalised displacement 

€ 

yk   the transfer function is 

€ 

H j,k,ω( ) =
yk
f j

=
u j

n( )uk
n( )

ωn
2 −ω2n=1

N
∑    

(with no damping), or 

 
For force F  at frequency ω applied at point  
x, and displacement w  measured at point y, 
the transfer function is 

H x,y,ω( ) =
w
F
=

un(x) un(y)
ωn

2 − ω 2n
∑    

(with no damping), or 

€ 

H j,k,ω( ) =
yk
f j
≈

u j
n( )uk

n( )

ωn
2 + 2iωωnζn −ω

2
n=1

N
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

H x,y,ω( ) =
w
F
≈

un(x) un (y)
ωn

2 + 2iωωnζn −ω
2

n
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

8.  Pattern of antiresonances 
For a system with well-separated resonances 
(low modal overlap), if the factor uj

n( )uk
n( )   

has the same sign for two adjacent 
resonances then the transfer function will 
have an antiresonance between the two 
peaks.  If it has opposite sign, there will be 
no antiresonance. 

 
For a system with low modal overlap, if the 
factor un(x) un(y)   has the same sign for two 
adjacent resonances then the transfer 
function will have an antiresonance between 
the two peaks.  If it has opposite sign, there 
will be no antiresonance. 

9.  Impulse response  
For a unit impulsive generalised force 

€ 

f j = δ(t) the measured response 

€ 

yk  is given 
by 

€ 

g j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

g j,k,t( ) ≈
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt e

−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit impulse applied at t = 0 at point x, 
the response at point  y  is 

g x, y, t( ) = un(x) un (y)
ωnn

∑ sinωnt    

for 

€ 

t ≥ 0 (with no damping), or 

g x, y, t( ) ≈ un(x) un(y)
ω nn

∑ sinωnt e
−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 
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10.  Step response  
For a unit step generalised force 

€ 

f j =
0 t < 0
1 t ≥ 0
# 
$ 
% 

 the measured response 

€ 

yk  is 

given by 

€ 

h j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt[ ]  

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h j,k,t( ) ≈
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt e

−ωnζnt[ ]
 

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit step force applied at t = 0 at point 
x, the response at point y  is 

€ 

h x,y,t( ) =
un (x) un (y)

ωn
2

n
∑ 1− cosωnt[ ]   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h t( ) ≈ un (x) un (y)
ωn
2

n
∑ 1− cosωnt e

−ωnζnt[ ]   

for 

€ 

t ≥ 0 (with small damping). 

 
 
Rayleigh’s principle for small vibrations 

The “Rayleigh quotient” for a discrete system is

€ 

V
˜ T 

=
ytK y
yt M y

 where 

€ 

y  is the vector of 

generalised coordinates, M is the mass matrix and K is the stiffness matrix.  The equivalent 
quantity for a continuous system is defined using the energy expressions on p. 6. 
If this quantity is evaluated with any  vector

€ 

y , the result will be 

(1)  ≥ the smallest squared frequency; 
(2)  ≤ the largest squared frequency; 

(3)  a  good approximation to

€ 

ωk
2 if 

€ 

y  is an approximation to 

€ 

u k( ).  

 (Formally,  

€ 

V
˜ T 

 is stationary  near each mode.) 
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS 
 

Transverse vibration of a stretched string 
 
Tension P, mass per unit length m, transverse displacement w(x, t) , applied lateral force 
f (x, t)  per unit length. 

 
 Equation of motion Potential energy Kinetic energy 

 m ∂ 2w
∂t2

− P
∂ 2w
∂x2

= f (x, t)  V =
1
2
P

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
m

∂w
∂ t

" 

# 
$ 

% 

& 
' 
2
dx∫  

 
 
 
Torsional vibration of a circular shaft 
 
Shear modulus G, density ρ , external radius a, internal radius b  if shaft is hollow, angular 
displacement θ(x,t) , applied torque f (x, t)  per unit length. 
Polar moment of area is J = π / 2( ) a4 − b4( ) . 
 
 Equation of motion Potential energy Kinetic energy 

 ρJ ∂
2θ

∂t 2
−GJ

∂2θ

∂x2
= f (x, t ) V =

1
2
GJ

∂θ
∂x

# 

$ 
% 

& 

' 
( 
2
dx∫  T =

1
2
ρJ

∂θ
∂ t

$ 

% 
& 

' 

( 
) 
2
dx∫  

 
 
 
Axial vibration of a rod or column 
 
Young’s modulus E, density ρ , cross-sectional area A, axial displacement w(x, t) , applied 
axial force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

− EA
∂ 2w
∂x2

= f (x, t)  V =
1
2
EA

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
 
 
Bending vibration of an Euler beam 
 
Young’s modulus E, density ρ , cross-sectional area A, second moment of area of cross-
section I,  transverse displacement w(x, t) , applied transverse force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

+ EI
∂ 4w
∂x4

= f (x,t)  V =
1
2
EI

∂2w
∂x2

" 

# 
$ 
$ 

% 

& 
' 
' 

2

dx∫  T =
1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
Note that values of I  can be found in the Mechanics Data Book. 
 


