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Question 1
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Recognising that α′ = α + N and β′ =
∑N
n=1 x

2
n + β, shows the

posterior has the same form as the prior with normalising constant
Z(α′, β′). Here α is the number of pseudo-observations in the prior.
β/α is the sample second moment of the pseudo-observations, i.e.,
the empirical value of σ2 for the pseudo-observations.

Note that in the exam, a fairly large number of people included the
prior N times (i.e. raised to the power of N) rather than once for the
entire data set.

b) (i) Given a posterior distribution p(σ2|{xn}Nn=1), the MAP estimate
is the value of σ2 that maximises the posterior. The ML esti-
mate is the value that maximises the likelihood p({xn}Nn=1|σ2).
They are both point estimates. MAP estimate also depends on
the prior.
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(ii) Take logarithms and set the derivative to zero, ignoring constant
terms. We get: (
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)
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Which is true if β = 0 and α = 0, or in the limit of infinite data
N →∞ where the data overwhelm the prior.

(iv) You could computer some measure of posterior uncertainty, such
as the posterior variance or the second moment around the MAP
estimate. However, the posterior will be highly asymmetric in
general, and so a better solution to reporting the variance would
be so-called credible intervals (e.g. report the median of the pos-
terior and where the 25% and 75% quantiles lie – the underlying
value should be between these two values half the time).
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Question 2

a) Compute the log posterior and recognise the quadratic form, drop-
ping terms that don’t depend on m. We get:
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Completing the square, we get that the posterior is Gaussian with
mean and variance given by:
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Note that in the exam, many people did not read the question care-
fully and started to compute the distribution over the output variable
y with m marginalised out i.e. p(y|x). In addition, many people in-
correctly thought that the following identity holds when simplifying

the solution:
∑

n fn/gn∑
n hn/gn

=
∑
n
fn
hn

which is incorrect.

b) (i) µ = 0, σ2 = 1 (data points at x = 0 provide no information
about the slope as the model predictions at this location do not
depend on the outputs y)

(ii) µ = −3/2 and σ2 = 1/2 (maximum likelihood with constant
observation noise would have slope µ = −3, but observation
noise is relatively large at x = ±1 being equal to 2 so estimate
is reduced downwards as the points could have arisen from a
smaller slope that had noise added to it; similarly the posterior
uncertainty is still high)

c) We seek the value of x that is a maximum of x2/(1 + x4), since that
leads to a minimum of the posterior variance (minimum parameter
uncertainty after the observation). Taking derivatives with respect
to x2, we get x2 = 1 or x = ±1.

In the exam, many got the intuition that there was a trade-off (ob-
servation noise increases with x and signal increases) but few realised
that they could minimise the posterior variance on m for one data
point wrt the input x to find an analytic solution.
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Question 3

a) Set the approximate posterior q(sn) to p(sn|xn), and compute F(θ, {p(sn|xn)}Nn=1).

p(sn = 1|xn) = p(xn|sn = 1)p(sn = 1)/p(xn)

=

ρ
λk

exp(−xn/λk)

(1−ρ)
λ0

exp(−xn/λ0) + ρ
λ1

exp(−xn/λ1)

or using the logistic rather than softmax form

p(sn = 1|xn) =
1

1 + 1−ρ
ρ

λ1

λ0
exp(−xn(1/λ0 − 1/λ1))

b) Holding {q(sn)}Nn=1 fixed, maximise F(θ, {q(sn)}Nn=1) with respect
to θ.

F(θ, {q(sn)}Nn=1) =

N∑
n=1

1∑
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q(sn = k) log p(sn = k, xn) + constant

=
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.

Similarly, derivatives for ρ – which requires a Lagrange multiplier –
yield ρ = 1

N

∑N
n=1 q(sn = 1)

In the exam, lots of people substituted in the optimal form for q
from question 2a into the expression for the free-energy and then
took derivatives of the resulting expression. This actually recovers
the true likelihood. Instead, in EM, q is treated as fixed i.e. it does
not depend on the parameters, and so dq

dθ = 0.

(c) Probability decay events given parameters is:

p(xn|λ0, λ1) = (1− ρ)
1

λ0
exp(−xn/λ0) + ρ

1

λ1
exp(−xn/λ1)

This expression is also the likelihood of the parameters. After the
E-Step the EM algorithm’s free energy is equal to the likelihood of
the parameters F(θ, {q(sn)}Nn=1) =

∑N
n=1 log p(xn|λ0, λ1). Also, at

convergence the EM algorithm finds parameters which are a (local)
optimum of the log-likelihood of the parameters. Finally notice that
this expression is the normalising constant of the posterior computed
in part (a).
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Question 4

(a) (i) Let p(y1 = k) = πk and p(yt+1 = j|yt = k) = Tjk.

log p(y
(1)
1:T , y

(2)
1:T ) = log p(y

(1)
1:T ) + log p(y

(2)
1:T )

Use standard trick to write the log probability as a sum of logs
with indicator functions. Optimise πk with a Lagrange multiplier
to obtain:

πk ∝ 1[y
(1)
1 = k] + 1[y

(2)
1 = k]

Hence πA = 0.5, πB = 0.5, πC = 0. Do the same with Tjk to get
the following state-transition probabilities.

In the exam, a large number of people missed out the maximum
likelihood setting of the initial state distribution from their so-
lutions.

(ii) The probability of the sequence under this model is 0 since A→
C never occurs in the training data. To improve, could put a
prior on π and T and do MAP estimation or go the whole-hog
and perform Bayesian inference instead of using point estimates.

(b) (i) Kalman filter. This is a hidden Markov model which has linear
Gaussian observation likelihoods and a linear Gaussian hidden
state transition probability.

(ii) Idea is to modify λ and σ2 in the AR model so that a single
transition is equal in distribution to two transitions under the
original AR model. Let ε ∼ N (0, 1)

xt+2 = λxt+1 + σεt+1

= λ(λxt + σεt) + σεt+1

= λ2xt + λσεt + σεt+1.
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We can achieve this behaviour by setting λ′ = λ2 and σ′2 =
σ2(λ2 + 1). In the exam, a lot of people made a mistake in this
last step.
The likelihood is unchanged.
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