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EGT2
ENGINEERING TRIPOS PART IIA

Wednesday 28 April 2021 13.30 to 15.10

Module 3F8

INFERENCE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.

Page 1 of 6



Version RET/4

1 A climate scientist would like to characterise the variability of daily temperature
measurements. They take a set of N scalar temperature measurements {xn}

N
n=1 which have

been centred so that they have zero mean. They model the temperature measurements
as independent draws from a zero mean Gaussian with unknown variance σ2, so that
p(xn |σ

2) = N (xn; 0, σ2). They place a prior over the unknown variance

p(σ2 |α, β) =
1

Z (α, β)

(
σ2

)−α/2
exp

(
−

β

2σ2

)
.

The prior is a valid probability density over the variance with parameters α and β (which
are positive scalars) and Z (α, β) is the normalising constant.

(a) Compute the posterior distribution over the variance parameter p(σ2 |{xn}
N
n=1)

taking care to leave your answer in a simple form. Provide an intuitive interpretation
for the parameters of the prior: α and β. [30%]

(b) The climate scientist would now like to compute a point estimate for the unknown
variance parameter using the same model described in the previous question.

(i) Define the maximum a posteriori (MAP) estimate and the maximum
likelihood estimate of the unobserved parameter σ2 in terms of probability
distributions. Comment on the similarities and differences between the definitions
of the two estimators. [20%]

(ii) Compute the MAP estimate of the parameter σ2. [20%]

(iii) When will the MAP estimate of σ2 be identical to the maximum likelihood
estimate? [15%]

(iv) How might the climate scientist quantify the uncertainty in the estimate of the
parameter σ2? [15%]

Here, and later in the exam, we have used the following notation to indicate univariate
Gaussian distributions:

N (z; µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (z − µ)2

)
.
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2 A regression problem comprises scalar inputs xn and scalar outputs yn which are
linearly related yn = mxn + εn. The observation noise is Gaussian, with mean 0, but it
has a variance that depends on the input p(εn) = N (εn; 0, 1 + x4

n). A standard Gaussian
prior is placed on the slope parameter so p(m) = N (m; 0, 1).

The slope m must be learned from a training dataset {xn, yn}
N
n=1 in a Bayesian way.

(a) Compute the posterior distribution over m after seeing N data points, {xn, yn}
N
n=1,

that is p(m |{xn, yn}
N
n=1). [30%]

(b) Compute the posterior distribution over m for the following datasets:

(i) A dataset comprising N = 1 data point x1 = 0, y1 = 100

(ii) A dataset comprising N = 2 data points x1 = −1, y1 = 3 and x2 = 1, y2 = −3

Provide intuitive explanations for these results. [30%]

(c) You are allowed to select an input location x at which you will be provided with
an output y. Which locations are most informative about the parameter m? Explain your
reasoning. [40%]
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3 A physicist measures radioactive decay events in a detector. A source is located
at x = 0 and the distance that decay events take place from the source is measured by
the detector and denoted xn. (The detector can be assumed to be infinitely large for
the purposes of this question i.e. there is no upper limit on the size of xn which can be
measured.)

The source emits two types of radioactive particle (denoted sn = 0 and sn = 1). The
probability of emitting particle type sn = 1 is p(sn = 1|ρ) = ρ. The decay events
from each type of particle are given by exponential distributions with decay constants that
depend on the particle type, denoted λ0 and λ1, that is

p(xn |sn = k, λ0, λ1) =
1
λk

exp(−xn/λk ) for k ∈ {0,1}

The physicist would like to use the EM algorithm to learn the decay constants (λ0 and
λ1) and emission probabilities (ρ) from a dataset of N decay measurements {xn}

N
n=1.

(a) Define the E-step of the EM algorithm. Calculate this update for the model above,
leaving your answer in a form which is suitable for implementation. [30%]

(b) Define the M-step of the EM algorithm. Calculate this update for the model above,
leaving your answer in a form which is suitable for implementation. [50%]

(c) Compute the probability of the decay events given the model parameters,
p(xn |ρ, λ0, λ1). Explain how this quantity relates to the EM algorithm. [20%]

For reference the variational free-energy for a model with parameters θ and binary latent
variables {sn}

N
n=1 is given by

F (θ, {q(sn)}Nn=1) =

N∑
n=1

1∑
k=0

q(sn = k) log
p(sn = k, xn |θ)

q(sn = k)

where q(sn) is an arbitrary distribution over the binary variable sn.
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4 (a) Two sequences y
(1)
1:T and y

(2)
1:T are generated from the same bigram model,

y
(1)
1:T = {A, A, A, A, A,B,B,C, A, A, A, A, A, A,B,B}

y
(2)
1:T = {B, A, A, A,B,C, A, A, A, A,B,B,B, A, A,B}.

(i) Write down the maximum-likelihood parameters for the bigram model for
these data. You do not need to derive the maximum likelihood estimates from first
principles. Draw a state transition diagram to illustrate your solution. [35%]

(ii) A third sequence from the same model is observed and used as held-out data
to evaluate the maximum-likelihood trained model

y
(3)
1:T = {A,B, A, A, A, A, A,C, A, A, A, A,B,B, A}.

Compute the probability of the observed sequence under the trained model.
Describe how the training method could be altered to improve the performance of
the trained model on the held-out sequence. [15%]

(b) A parking sensor on a car emits ultra-sonic pulses at regular time intervals t =

1,2,3, . . . and a receiver measures the time it takes for the pulses to travel to a nearby
object and be reflected back. Each travel-time, yt , is related to the distance between the
sensor and the object xt by the speed of sound, c, with a factor of two accounting for
the fact that the pulse must travel to the object and back. The sensor is noisy and is well
approximated by a Gaussian with variance σ2

y, that is p(yt |xt ) = N (yt ; 2xt/c, σ2
y).

The distance to the object is assumed to vary slowly over time which is approximated by
a Gaussian first order auto-regressive model, p(xt |xt−1) = N (xt ; λxt−1, σ

2).

(i) What algorithm would be appropriate for estimating the current distance to the
object at time t, that is xt , given a sequence of observed travel-times y1:t . Explain
your reasoning. [10%]

(ii) The sample rate of the sensor has to be changed. Rather than sampling at
each time t = 1,2,3, . . . it now samples at half the rate corresponding to times
t = 1,3,5, . . . instead. Convert the original model for the higher sample rate into a
new model which is appropriate for the lower sample rate. Explain your reasoning,
including how the parameters of the new model relate to those in the old model. [40%]

END OF PAPER
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