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EGT2
ENGINEERING TRIPOS PART IIA

Wednesday 27 April 2022 2 to 3.40

Module 3F8

INFERENCE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Engineering Data Book.

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 (a) A group of K hospitals each have access to their own private observed data
xk where k = 1, . . . ,K . Each hospital has individually used the same parametric model
p(xk |θ) with the same prior over parameters p(θ) to infer the parameters θ using Bayes’
rule, forming local posteriors p(θ |x1), p(θ |x2), . . . , p(θ |xK ).

(i) Explain how Bayes’ rule has been used to compute the local posteriors. [10%]

(ii) The hospitals are not allowed to share their data directly due to privacy rules,
but they are permitted to share their posteriors. They would therefore like to
compute the global posterior p(θ |x1, x2 . . . xK ) in terms of the local posteriors.
Derive an equation for this purpose. You do not need to explicitly compute the
normalising constant in your solution. [25%]

(iii) One of the hospitals has collected new test data. The hospital uses the global
posterior to make predictions and compares these predictions to those obtained by
only using the local posterior. The predictions obtained using the local posterior are
found to be superior. Is this expected? Explain what might be happening. [20%]

(b) A diligent member of the population has been carrying out twice weekly lateral
flow tests for COVID-19. They do not have symptoms, but receive a positive result from
a lateral flow test. A follow-up PCR test is negative.

For the lateral flow test the probability of a negative test result (LFT = 0) given that
the individual does not have COVID-19 (C = 0) is P(LFT = 0|C = 0) = 0.999. The
probability of a positive lateral flow test result given the individual does have COVID-19
is P(LFT = 1|C = 1) = 0.85.

For the PCR test the probability of a negative test result (PCR = 0) given that the
individual does not have COVID-19 is P(PCR = 0|C = 0) = 1. The probability of a
positive PCR test result given the individual does have COVID-19 is P(PCR = 1|C =
1) = 0.95.

The COVID-19 prevalence in asymptomatic individuals is estimated to be 1%.

Compute the posterior probability that the asymptomatic individual has COVID-19 given
the test results, that is P(C = 1|LFT = 1,PCR = 0). Explain your reasoning and any
assumptions you make. [45%]
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2 (a) An online education platform assesses students using an exam question. Each
student’s answers are marked and given an integer score. The highest score possible is
ten and the minimum score is zero. The platform would like to predict the score a student
will get on the question based on a set of features they have obtained which describes
each student. The score on the question is denoted y ∈ {0,1,2,3, . . . ,10}. The features,
a vector of length D, are denoted x. The platform has collected a training set comprising
the features and scores from N students {xn, yn}

N
n=1 and would like to use this to train a

model and apply it to new students.

The platform is considering using a softmax multi-class classification model to perform
the prediction so that p(y = k |x) ∝ exp(w>k x). Here the model parameters are a set of D
dimensional weights {wk }

10
k=0.

They are also considering using a Gaussian regression model p(y |x) = N (y; w>x,σ2
y).

Here the parameters are a single D dimensional weight w and a variance parameter σ2
y.

(i) Compare and contrast these two modelling choices, listing strengths and
weaknesses. [25%]

(ii) Design your own model for the data making sure that you explain your design
choices. [25%]

Here, and later in the exam, we have used the following notation to indicate univariate
Gaussian distributions:

N (z; µ,σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (z − µ)2

)
.

(b) The KL divergence between two probability densities q(x) and p(x) is defined as

KL(q(x) | |p(x)) =
∫

q(x) log
q(x)
p(x)

dx.

Here log denotes natural logarithm i.e. log to base e.

Consider two exponential densities over a non-negative scalar x. The first has mean λ,
that is q(x) = 1

λ exp(−x/λ). The second has mean equal to 1, that is p(x) = exp(−x).

(i) Compute the KL divergence between the densities, KL(q(x) | |p(x)). [25%]

(ii) Plot the KL divergence as a function of λ and label salient aspects of the plot.
[25%]
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3 A supermarket chain is looking to use machine learning for automation.
Specifically, in a store, customers select a number of oranges to put into a bag and
then weigh the bag on weighing scales. The total weight of the bag is recorded by the
supermarket, not how many oranges it contains. The supermarket charges the customer
per orange and so it would like to develop a system that automatically infers the number
of oranges in customer c’s bag, denoted Nc, from the measured weight xc.

Individual oranges are assumed to have a weight w distributed according to a Gaussian
distribution with mean µ and unit variance p(w |µ) = N (w; µ,1). A bag may contain up to
a maximum of 10 oranges. A uniform a priori distribution over the number of oranges in
a bag is appropriate. The weighing scales can be assumed to be noiseless and the weight
of the bag is so small that it can be neglected.

(a) Compute the probability of recording a measured weight xc given the number of
oranges in the bag Nc and their average weight µ, that is p(xc |Nc, µ). [15%]

(b) Compute the posterior distribution over the number of oranges in a bag Nc given
the weight of the bag xc, that is p(Nc |xc, µ). [15%]

(c) The supermarket would like to learn the average weight of an orange from
measurements obtained from C customers {xc}

C
c=1 using the EM algorithm.

(i) Explain how the EM algorithm can be used to learn the average weight of an
orange and what the E-step and M-steps involve. [20%]

(ii) Compute the M-step for learning the mean parameter µ. [50%]

For reference the variational free-energy for a model with parameters θ and categorical
latent variables {sn}

N
n=1 is given by

F (θ, {q(sn)}Nn=1) =
N∑

n=1

K∑
k=1

q(sn = k) log
p(sn = k, xn |θ)

q(sn = k)
.

where q(sn) is an arbitrary distribution over the categorical variable sn.
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4 A Hidden Markov Model (HMM) has a discrete hidden state variable xt which can
take one of two values. The initial state distribution and transition probabilities for the
hidden state variable are given by,



p(x1 = 1)
p(x1 = 2)


=



1/2
1/2


,



p(xt = 1|xt−1 = 1) p(xt = 1|xt−1 = 2)
p(xt = 2|xt−1 = 1) p(xt = 2|xt−1 = 2)


=



0.9 0.1
0.1 0.9


.

The observed state variable yt is also discrete and can take one of three values



p(yt = 1|xt = 1) p(yt = 1|xt = 2)
p(yt = 2|xt = 1) p(yt = 2|xt = 2)
p(yt = 3|xt = 1) p(yt = 3|xt = 2)


=



0.5 0
0.5 0
0 1


.

(a) Write down a sequence of T = 20 hidden state and observed state variables
{xt , yt }

T
t=1 that might plausibly have been generated from this model. Annotate your

sequence explaining how it relates to the parameters of the model. [25%]

(b) Compute p(yt |yt−1) in terms of p(xt−1 |yt−1) for this HMM. [30%]

(c) Using your answer to part (b), or otherwise, show mathematically that this HMM
is equivalent to a first order Markov Model over the observed state, i.e. a bigram model.
Write down the parameters of this equivalent bigram model. [30%]

(d) Is it generally true that an HMM with discrete hidden and observed states can be
written in terms of an equivalent bigram model? Explain your reasoning. [15%]

END OF PAPER
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Numerical answers

1 (b) p(C = 1|LFT = 1,PCR = 0) ≈ 0.3

4 (b)



p(yt = 1|yt−1 = 1) p(yt = 1|yt−1 = 2) p(yt = 1|yt−1 = 3)
p(yt = 2|yt−1 = 1) p(yt = 2|yt−1 = 2) p(yt = 1|yt−1 = 3)
p(yt = 3|yt−1 = 1) p(yt = 3|yt−1 = 2) p(yt = 1|yt−1 = 3)


=



0.45 0.45 0.05
0.45 0.45 0.05
0.1 0.1 0.9



4 (c) Transition matrix as given in 4b above. Initial state distribution:



p(y1 = 1)
p(y1 = 2)
p(y1 = 3)


=



0.25
0.25
0.5
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