
Solutions to 3M1, 2018

1. Linear Algebra

See separate handwritten pages.

2. Discrete Markov Processes

(a)(i) Each row of P is the probability of transition from a state to all other states. As the
process must be in one of the states at the next time instance, each row must add to one. [10%]

(a)(ii) Writing out

P− I =


p11 − 1 p12 . . . p1N
p21 p22 − 1 . . . p2N
...

...
...

...
pN1 pN2 . . . pNN − 1


Summing the first N − 1 columns yields the (negative) the last column. Thus the columns
of P− I are not independent, so det(P− I) = 0. This means that an eigenvalue of P must
be 1. [20%]

(a)(iii) For a stationary distribution need to satisfy

πP = π

This will be the normalised left eigenvector of the largest eignvalue. Thus

π(∞)P = λπ(∞)

where λ is the eigenvalue. If the magnitude is greater than 1, then the resulting distribution
will not be a valid distribution. [15%]

(b)(i) Transition matrices are

P =

 0 0.5 0.5
0 0 1
1 0 0

 ; A =
1

3

 1 1 1
1 1 1
1 1 1


[15%]

(b)(ii) To find the stationary need to solve

πP̃ = π

For d = 0 it is simple to show this yields the following equations

π3 = π1

0.5π1 = π2

0.5π1 + π2 = π3

Solving these yields

π =
[

0.4 0.2 0.4
]

For d = 1 it is simple to see that all elements of the stationary distribution must be the same

π =
1

3

[
1 1 1

]
[25%]

(b)(iii) As N gets large it is not practical to find the eigenvalues/vectors for the matrix P̃.
However the standard approach for finding largest eigenvalues can be applied. The process
is:
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(a) initialise distribution

π(0) =
1

N

[
1 1 . . . 1

]
(b) update distribution

π(i+1) = (1− d)π(i)P + dπ(0)

(c) repeat until converged

As the matrix P should be sparse this can be more efficient than simply cost N2 from a
matrix vector multiplication. [15%]

3. Optimisation: gradient descent The gradient of the function is given by

∇V =

(
8x− 6y + 1
−6x+ 8y − 2

)
,

At the origin, the gradient direction is (1,−2). So the function value f(α) along the gradient
with step α starting at the origin is given by

f(α) = α2 + 4α2 + 3(3α)2 + α+ α = 32α2 + 5α

which takes on its minimum value at α = −5/64, so the updated location is (−5, 10)/64,
with a function value ≈ −0.19.

Subsequent steps of Steepest Descent would get closer and closer to the minimum. Since
the function is a quadratic form, one more Conjugate Gradient step would get to the exact
minimum (assuming no rounding and truncation errors).

The Taylor expansion of a function in two dimensions, f(z) with z ≡ (x, y), is

f(z) = f(0) + zT∇f(0) +
1

2
zT∇2f(0)z + . . .

Truncating at second order and setting the gradient of this to zero gives

0 = ∇f(0) +∇2f(0)z

z = −[∇2f(0)]−1∇f(0)

So the Newton update rule is

zk+1 = zk − [∇2f(zk)]−1∇f(zk)

The second derivative (Hessian) matrix is given by

H =

(
8 −6
−6 8

)
,

its determinant is 28, and its inverse is

H−1 =
1

14

(
4 3
3 4

)
,

Therefore the result of a Newton step starting from origin is

− 1

14

(
4 3
3 4

)(
1
−2

)
=

1

14

(
2
5

)
This gives a stationary point of the function, because it gives zero gradient when substituted
into the above formula for ∇V .

The second order optimality conditions are that the the eigenvalues of the Hessian need to
be positive for a stationary point to be a minimum. The eigenvalues of the Hessian are 2 and
14, so the stationary point we found is indeed a minimum. The corresponding eigenvectors
are (1, 1) and (1,−1).
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4. The objective is to maximise 2x1 + x2, subject to the following constraints,

2x1 ≥ x2
2x1 + 3x2 ≤ 16

x1 ≤ x2 + 3

x1, x2 ≥ 0

We introduce slack variables s1, s2, s3, one for each of the constraints, to obtain the following
equality constraints, in addition to all variables being positive,

−2x1 + x2 + s1 = 0

2x1 + 3x2 + s2 = 16

x1 − x2 + s3 = 3

x1, x2, s1, s2, s3 ≥ 0

The corresponding tableau is canonical,
1 −2 −1 0 0 0 0
0 −2 1 1 0 0 0
0 2 3 0 1 0 16
0 1 −1 0 0 1 3


Pivoting on column 2 (x1) and row 4 (s3), we get

1 0 −3 0 0 2 6
0 0 −1 1 0 2 6
0 0 5 0 1 −2 10
0 1 −1 0 0 1 3


Now pivoting on column 3 (x2) and row 3 (s2), we get

5 0 0 0 3 4 60
0 0 0 5 0 8 40
0 0 5 0 1 −2 10
0 5 0 0 1 3 25


This is now the optimal solution, giving 60/5=12 as the optimal solution for x1 = 5 and
x2 = 2.
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