Solutions to 3M1, 2018

1. Linear Algebra

See separate handwritten pages.
2. Discrete Markov Processes
(a)(i) Each row of \mathbf{P} is the probability of transition from a state to all other states. As the process must be in one of the states at the next time instance, each row must add to one.
(a)(ii) Writing out

$$
\mathbf{P}-\mathbf{I}=\left[\begin{array}{cccc}
p_{11}-1 & p_{12} & \cdots & p_{1 N} \\
p_{21} & p_{22}-1 & \cdots & p_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
p_{N 1} & p_{N 2} & \cdots & p_{N N}-1
\end{array}\right]
$$

Summing the first $N-1$ columns yields the (negative) the last column. Thus the columns of $\mathbf{P}-\mathbf{I}$ are not independent, so $\operatorname{det}(\mathbf{P}-\mathbf{I})=0$. This means that an eigenvalue of \mathbf{P} must be 1 .
(a)(iii) For a stationary distribution need to satisfy

$$
\pi \mathrm{P}=\pi
$$

This will be the normalised left eigenvector of the largest eignvalue. Thus

$$
\boldsymbol{\pi}^{(\infty)} \mathbf{P}=\lambda \boldsymbol{\pi}^{(\infty)}
$$

where λ is the eigenvalue. If the magnitude is greater than 1 , then the resulting distribution will not be a valid distribution.
(b)(i) Transition matrices are

$$
\mathbf{P}=\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] ; \quad \mathbf{A}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(b)(ii) To find the stationary need to solve

$$
\pi \tilde{\mathbf{P}}=\pi
$$

For $d=0$ it is simple to show this yields the following equations

$$
\begin{aligned}
\pi_{3} & =\pi_{1} \\
0.5 \pi_{1} & =\pi_{2} \\
0.5 \pi_{1}+\pi_{2} & =\pi_{3}
\end{aligned}
$$

Solving these yields

$$
\boldsymbol{\pi}=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right]
$$

For $d=1$ it is simple to see that all elements of the stationary distribution must be the same

$$
\pi=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

(b)(iii) As N gets large it is not practical to find the eigenvalues/vectors for the matrix $\tilde{\mathbf{P}}$. However the standard approach for finding largest eigenvalues can be applied. The process is:
(a) initialise distribution

$$
\boldsymbol{\pi}^{(0)}=\frac{1}{N}\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]
$$

(b) update distribution

$$
\boldsymbol{\pi}^{(i+1)}=(1-d) \boldsymbol{\pi}^{(i)} \mathbf{P}+d \boldsymbol{\pi}^{(0)}
$$

(c) repeat until converged

As the matrix \mathbf{P} should be sparse this can be more efficient than simply cost N^{2} from a matrix vector multiplication.
3. Optimisation: gradient descent The gradient of the function is given by

$$
\nabla V=\binom{8 x-6 y+1}{-6 x+8 y-2}
$$

At the origin, the gradient direction is $(1,-2)$. So the function value $f(\alpha)$ along the gradient with step α starting at the origin is given by

$$
f(\alpha)=\alpha^{2}+4 \alpha^{2}+3(3 \alpha)^{2}+\alpha+\alpha=32 \alpha^{2}+5 \alpha
$$

which takes on its minimum value at $\alpha=-5 / 64$, so the updated location is $(-5,10) / 64$, with a function value ≈-0.19.
Subsequent steps of Steepest Descent would get closer and closer to the minimum. Since the function is a quadratic form, one more Conjugate Gradient step would get to the exact minimum (assuming no rounding and truncation errors).
The Taylor expansion of a function in two dimensions, $f(z)$ with $z \equiv(x, y)$, is

$$
f(z)=f(0)+z^{T} \nabla f(0)+\frac{1}{2} z^{T} \nabla^{2} f(0) z+\ldots
$$

Truncating at second order and setting the gradient of this to zero gives

$$
\begin{aligned}
& 0 \quad=\nabla f(0)+\nabla^{2} f(0) z \\
& z=-\left[\nabla^{2} f(0)\right]^{-1} \nabla f(0)
\end{aligned}
$$

So the Newton update rule is

$$
z_{k+1}=z_{k}-\left[\nabla^{2} f\left(z_{k}\right)\right]^{-1} \nabla f\left(z_{k}\right)
$$

The second derivative (Hessian) matrix is given by

$$
H=\left(\begin{array}{cc}
8 & -6 \\
-6 & 8
\end{array}\right)
$$

its determinant is 28 , and its inverse is

$$
H^{-1}=\frac{1}{14}\left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)
$$

Therefore the result of a Newton step starting from origin is

$$
-\frac{1}{14}\left(\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right)\binom{1}{-2}=\frac{1}{14}\binom{2}{5}
$$

This gives a stationary point of the function, because it gives zero gradient when substituted into the above formula for ∇V.
The second order optimality conditions are that the the eigenvalues of the Hessian need to be positive for a stationary point to be a minimum. The eigenvalues of the Hessian are 2 and 14 , so the stationary point we found is indeed a minimum. The corresponding eigenvectors are $(1,1)$ and $(1,-1)$.
4. The objective is to maximise $2 x_{1}+x_{2}$, subject to the following constraints,

$$
\begin{aligned}
& 2 x_{1} \geq x_{2} \\
& 2 x_{1}+3 x_{2} \leq 16 \\
& x_{1} \leq x_{2}+3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

We introduce slack variables s_{1}, s_{2}, s_{3}, one for each of the constraints, to obtain the following equality constraints, in addition to all variables being positive,

$$
\begin{aligned}
-2 x_{1}+x_{2}+s_{1} & =0 \\
2 x_{1}+3 x_{2}+s_{2} & =16 \\
x_{1}-x_{2}+s_{3} & =3 \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3} & \geq 0
\end{aligned}
$$

The corresponding tableau is canonical,

$$
\left(\begin{array}{ccccccc}
1 & -2 & -1 & 0 & 0 & 0 & 0 \\
0 & -2 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 3 & 0 & 1 & 0 & 16 \\
0 & 1 & -1 & 0 & 0 & 1 & 3
\end{array}\right)
$$

Pivoting on column $2\left(x_{1}\right)$ and row $4\left(s_{3}\right)$, we get

$$
\left(\begin{array}{ccccccc}
1 & 0 & -3 & 0 & 0 & 2 & 6 \\
0 & 0 & -1 & 1 & 0 & 2 & 6 \\
0 & 0 & 5 & 0 & 1 & -2 & 10 \\
0 & 1 & -1 & 0 & 0 & 1 & 3
\end{array}\right)
$$

Now pivoting on column $3\left(x_{2}\right)$ and row $3\left(s_{2}\right)$, we get

$$
\left(\begin{array}{ccccccc}
5 & 0 & 0 & 0 & 3 & 4 & 60 \\
0 & 0 & 0 & 5 & 0 & 8 & 40 \\
0 & 0 & 5 & 0 & 1 & -2 & 10 \\
0 & 5 & 0 & 0 & 1 & 3 & 25
\end{array}\right)
$$

This is now the optimal solution, giving $60 / 5=12$ as the optimal solution for $x_{1}=5$ and $x_{2}=2$.

1. (a) (c) If $A=A^{7}$, the $U=V$.

Sine eignuch of $A^{\top} A$ ard $A^{\top} A$ an the seme, and the sence os A, prosten redue to a regular eigon decompuitia/diagonlisction
(ii) Eron con becom large whan $K(A)$ is logs.. In $l_{2}, \quad k_{2}=\frac{\sqrt{\lambda_{\max }\left(A A^{\top}\right)}}{\sqrt{\lambda_{\min }\left(A A^{\top}\right)}}=\frac{\nabla_{\max }}{\sigma_{\min }}=\frac{\nabla_{1}}{\sigma_{/ c}}$
$k=\min (m, \omega)$
(b) l_{2} norm will leed to lineer prosken in λ^{x} :

$$
\begin{aligned}
\lambda^{4} & =\min \left\|A x-\lambda^{*} x\right\|_{2} \\
e & =\left\|A x-\lambda^{*} x\right\|_{2}^{2} \\
& =\left(A x-\lambda^{4} x\right)^{\top}\left(A x-\lambda^{\top} x\right) \\
& =x^{\top} A^{\top} A x-\lambda^{*} x^{\top} A x-\dot{\lambda}^{\top} A^{\top} x+\lambda^{*} x^{\top} x
\end{aligned}
$$

Differntial e w.r.t. λ^{α} ald sut equal to zere,

$$
\begin{aligned}
& \frac{d c}{d \lambda^{\alpha}}=-2 x^{\top} A x+2 \lambda^{k} x^{\top} x=0 \\
& \Rightarrow \lambda^{x}=\frac{x^{\top} A x}{x^{\top} x}
\end{aligned}
$$

Using l_{2} norm is convenist becan erver expestien is guadztis in λ^{\prime}, hena optinelity cendifa will be linear.
(c)

$$
\begin{aligned}
& x_{k+1}=N^{-1} P_{x_{k}}+N^{-1} b \quad\left(A_{x}=b\right) \\
& e_{k}=x-x_{k} \\
& e_{k+1}=x-x_{k+1}=x-N^{-1} P_{x_{k}}+N^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& e_{k+1}=N^{-1}\left(N x-P_{x_{k}} \mp \frac{b}{L}\right) \\
&=N^{-1}\left(N x-P_{x}=(N-P)_{n}\right. \\
&=N^{-1} P e_{k} \\
& e_{k+1}\left.=N^{-1} P e_{k}=(N-P)_{x}\right) \\
&\left.N^{-1} P\right)^{k+1} \underline{e}_{0}
\end{aligned}
$$

Regu. that $\left\|e_{K_{k 1}}\right\|<\left\|e_{k}\right\|$
Expar e. using eigavich of $N^{-1 / p}$

$$
\begin{aligned}
& \underline{e}_{0}=\sum_{i=1}^{n} c_{i} \underline{u}_{i} \\
& \underline{s}_{k} \cong\left\langle c_{i} \lambda_{i}^{k} \underline{u}_{i}\right.
\end{aligned}
$$

\Rightarrow requir thet $\mid \lambda_{\text {el }} / \mathrm{mar}<1$
In tern of norm, $\|M\|_{2}=\left\|N^{-1} P\right\|_{2}<1$

