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EGT2
ENGINEERING TRIPOS PART IIA

Wednesday 2 May 2018 9.30 to 11:10

Module 3M1

MATHEMATICAL METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book
3M1 Optimization Data Sheet (4 pages)

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) For a m×n matrix AAA, consider a singular value decomposition AAA =UUUΣΣΣVVV T .

(i) What is the relationship between UUU and VVV when AAA is symmetric? [10%]

(ii) In terms of the components of ΣΣΣ, when will the computation of a matrix-
vector product, yyy = AAAccc, using a computer be susceptible to large round-off errors in
terms of the l2 norm? [10%]

(b) For a symmetric matrix AAA, given a vector xxx that is close to an eigenvector of AAA such
that AAAxxx ≈ λxxx where λ is the associated eigenvalue, prove that an optimal estimate of the
eigenvalue is given by

λ
? =

xxxT AAAxxx
xxxT xxx

,

and give the error measure that is minimised. [30%]

(c) A stationary iterative method for solving AAAxxx = bbb involves splitting AAA such that
AAA = NNN−PPP and solving

xxxk+1 = NNN−1PPP︸ ︷︷ ︸
MMM

xxxk +NNN−1bbb,

where the split is chosen such that NNNxxx = ccc is much cheaper to solve than AAAxxx = ccc.

Prove the necessary condition to guarantee convergence of this iterative method, and
express the condition in terms of a norm of the iteration matrix MMM. [50%]
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2 (a) An N × N transition matrix P governs transitions in a finite-space
homogeneous Markov chain where element p jk yields

p jk = P(Xn+1 = k|Xn = j)

(i) Explain why the sum of the elements in any row of P is equal to 1. [10%]

(ii) By considering the sum of the first N− 1 columns of P− I, where I is the
identity matrix, or otherwise, show that P has at least one eigenvalue equal to 1. [20%]

(iii) By considering the stationary distribution of the process, or otherwise, show
that the magnitude of the eigenvalues of the transition matrix must all be less than
or equal to 1. [15%]

(b) Fig. 1 shows the state-diagram for surfing three connected web-pages and the
associated probability of transitioning between pages.

0.5

2

1 3

1.0

0.5

1.0

Fig. 1

In addition to the process shown, at each click there is a probability d that an individual
simply randomly selects a web-page. Show that the transition matrix for the surfing of an
individual is P̃ where

P̃ = dA+(1−d)P

where P is the transition matrix for the process shown in Fig 1.

(i) What are the transition matrices P and A? [15%]

(ii) Find the stationary distributions for P̃ when d = 0 and d = 1. [25%]

(iii) In practice the number of web-pages, N, is very large. Describe an iterative
approach for finding the stationary distribution that is efficient as the number of
web-pages gets very large. You should compute the complexity of the approach. [15%]
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3 The potential energy, V , of a mechanical system is given by the following expression
in terms of the free variables x and y,

V (x,y) = x2 + y2 +3(x− y)2 + x−2y.

(a) Starting from x = 0,y = 0, execute one step of Steepest Descent minimization,
giving the updated location and the function value at that location. [20%]

(b) State what you expect would happen if subsequent steps were taken with the
following methods,

(i) Steepest Descent;

(ii) Conjugate Gradients.

[15%]

(c) By considering the Taylor expansion of a function in two dimensions, write down
the update rule corresponding to a Newton step. [10%]

(d) Again starting from the x= 0,y= 0 position, execute one Newton step and comment
on the result. [25%]

(e) State the second order optimality conditions for a local minimum, and verify that
the location of the stationary point of the function is indeed a minimum. Calculate the
eigenvectors of the Hessian matrix and sketch the contours of the potential energy function
V (x,y), also marking the location of the result of part (a). [30%]

Page 4 of 6



Version CSG/4

4 A factory is manufacturing two kinds of products, A and B, from a similar set of
raw materials and similar but not identical processes. The income from selling a unit of
A is £2 and for unit of B is £1. The factory manager wishes to maximise the income by
making the optimum amount of A and B each day, subject to the following constraints.
For one step of the manufacturing, there is only one machine, which can process one unit
of either A or B at a time, and it takes 2 hours to process a unit of A and 3 hours to process
a unit of B. The machine can be operated for a maximum of 16 hours per day over two
shifts. Another step, in which A and B units can be processed together is such that the
number of A units processed cannot exceed three plus the number of B units. Due to an
agreement with one of the unions, the manager has agreed to make at least half as many
A units as he makes of B units.

(a) Convert the above problem to a linear programming optimisation problem, stating
the objective function and the constraints. Use variables x1 and x2 for the number of units
made daily of A and B, respectively. [20%]

(b) Draw the feasible region graphically, and identify the solution by inspection. [20%]

(c) Introduce slack variables to convert the problem to standard form and show that a
canonical tableau is given by

1 −2 −1 0 0 0 0
0 −2 1 1 0 0 0
0 2 3 0 1 0 16
0 1 −1 0 0 1 3


[20%]

(d) Execute the simplex method until convergence, starting from the basic feasible point
x1 = x2 = 0 and using the above canonical tableau, showing each pivot element and a new
the tableau after each pivot operation. Identify the basic and nonbasic variables at each
step by marking the corresponding columns. Indicate the path of the simplex algorithm
on your drawing in part (b). [40%]

END OF PAPER
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1.

 

Taylor Series Expansion

 

For one variable:

For several variables:

where

gradient  and hessian 

 is a symmetric  matrix and 

 

R

 

 includes all higher order terms.

2.

 

Golden Section Method
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(a) Evaluate  at points A, B, C and D.

(b) If , new interval is A – C.

If , new interval is B – D.
If , new interval is either
A – C or B – D.

(c) Evaluate  at new interior point. If
not converged, go to (b).
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3.

 

Newton’s Method

 

(a) Select starting point 

(b) Determine search direction 

(c) Determine new estimate 

(d) Test for convergence. If not converged, go to step (b)

4.

 

Steepest Descent Method

 

(a) Select starting point 

(b) Determine search direction 

(c) Perform line search to determine step size  or evaluate 

(d) Determine new estimate 

(e) Test for convergence. If not converged, go to step (b)

5.

 

Conjugate Gradient Method

 

(a) Select starting point  and compute  and 

(b) Determine new estimate 

(c) Evaluate  and 

(d) Determine search direction 

(e) Determine step size 

(f) Test for convergence. If not converged, go to step (b)

6.

 

Gauss-Newton Method (for Nonlinear Least Squares)

 

If the minimum squared error of residuals  is sought:

Minimise 

(a) Select starting point 

(b) Determine search direction 
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where 

(c) Determine new estimate 

(d) Test for convergence. If not converged, go to step (b)

7.

 

Lagrange Multipliers

 

To minimise  subject to 

 

m

 

 equality constraints , , solve the sys-
tem of simultaneous equations

where  is the vector of Lagrange multipliers and

8.

 

Kuhn-Tucker Multipliers

 

To minimise  subject to 

 

m

 

 equality constraints ,  and 

 

p

 

 inequal-
ity constraints , , solve the system of simultaneous equations

where  are Lagrange multipliers and  are the Kuhn-Tucker multipliers.
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9.

 

Penalty & Barrier Functions

 

To minimise  subject to 

 

p

 

 inequality constraints , , define

where  is a penalty function, e.g.

or alternatively

where  is a barrier function, e.g.

Then for successive  and  such that  and , solve the prob-
lem

minimise 
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