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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2017 9:30 to 11

Module 4F2

ROBUST & NONLINEAR CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Consider the closed loop system in Figure 1 where

G0(s) =
1

s−1

is the transfer function of an unstable plant, K(s) represents the controller, and ∆(s)
represents multiplicative uncertainties.

(a) The controller

K(s) =
s−1
s+1

guarantees stable transfer functions Tr→y and Tr→e, respectively from r to y and from r to
e. However, it is known that zero/pole cancellations of unstable poles should be avoided.

(i) Define the notion of internal stability. [15%]

(ii) Show that the nominal closed loop system is not internally stable. [15%]

(b) The simpler proportional controller

K(s) = k

guarantees nominal closed loop stability for any k > 1.

(i) Compute the nominal performance ‖Td→y‖∞ achieved by the controller. [15%]

(ii) Using Parseval’s theorem 1
2π

∫
∞
−∞ f̄ ( jω)∗ḡ( jω)dω =

∫
∞
−∞ f (t)∗g(t)dt show

that supd 6=0
‖y‖2
‖d‖2 ≤ ‖Td→y‖∞. [20%]

(c) Assuming K(s) = k > 1, use the small gain theorem to answer the following:

(i) Find the largest bound on the unstructured uncertainty ‖∆(s)‖∞ for which the
proportional controller guarantees robust stability. [15%]

(ii) Suppose that |∆( jω)| ≤ ω+2k
4k . For which k > 1, if any, is the closed loop

system stable? Motivate your answer. [20%]
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2 Consider the transfer function

Gα(s) =
1

s+α
where − 1

2
≤ α ≤ 1

2
. (1)

(a) We want to find a controller K that stabilizes Gα(s) for any admissible value of α .
We approach the design by perturbation to coprime factors.

(i) Find a normalized left coprime factorization for G0(s) =
Ñ(s)
M̃(s)

. [10%]

(ii) Write Gα(s)=
Ñ(s)+∆N(s)
M̃(s)+∆M(s)

as a perturbation of G0(s). Evaluate ‖[∆N ,∆M]‖∞.
[20%]

(b) Recall the definition of the “stability margin”

b(G0,K) = ‖
[K

I
]
[I−G0K]−1M̃−1‖−1

∞ .

Using the small gain theorem, derive the condition on b(G0,K) that guarantees stability
of the closed loop system in Figure 2. Compute the value of b(G0,K) that guarantees
stability for any Gα(s) defined in (1). [50%]

K
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Fig. 2

(c) For the particular controller K(s) =−k, find the range of gains k > 0 that guarantee
closed loop stability. [20%]
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3 Consider the (negative) feedback interconnection of the linear system of transfer
function H(s) = 1

s(s+1)(s+2) , with a differentiable sector nonlinearity y=ϕ(u)u described
by the nonlinear gain

0 < ϕ(u)≤ k2

(a) Sketch the Nyquist plot of H(s) and use the Nyquist criterion to determine
the maximal value of k2 such that the zero equilibrium of the linearised system is
asymptotically stable. Is the equilibrium of the nonlinear system also asymptotically
stable in this case ? Justify your answer. [20%]

(b) Use the circle criterion to provide a lower bound on k2 that guarantees global
asymptotic stability of the zero equilibrium. [20%]

(c) Applying the circle criterion is equivalent to applying the passivity theorem after a
suitable loop transformation. In your answer to question (b), what is the underlying loop
transformation ? Show that the transformed nonlinearity is strictly passive and that the
transformed transfer function is strictly positive real. [20%]

(d) Could the lower bound provided by the circle criterion in question (b) be improved
by applying the Popov criterion ? Justify your answer. [20%]

(e) Consider now a sign nonlinearity

y = sign(u)

In simulation, the negative feedback interconnection with H(s) results in a limit cycle
oscillation of frequency 1.3 rad s−1 and amplitude 0.2 . Compare this simulation result
with the prediction of the describing function method. [20%]
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4 The Hopfield neural network

ẋi =−xi +S(ui−
1

n−1 ∑
j 6=i

x j), i = 1, . . . ,n (2)

is sometimes called a winner-take-all network. For the analysis below, assume that S is
differentiable but well approximated by the piecewise linear function

S(y) =


0, y≤ 0,
2y 0≤ y≤ 1,
2, y≥ 1

(a) Consider n = 2 and an input vector with entries u1 = u2 = 1. Determine the
equilibria of the system and sketch the phase portrait of the linearised system around
each of them. [30 %]

(b) Sketch a phase portrait of this nonlinear network for the two following situations:
(i) 1 ≈ u1 ≈ 2u2, and (ii) u1 ≈ u2 ≈ 1. Explain the behaviour of the network from the
phase portraits. [40 %]

(c) For the two situations considered in (b), sketch the time-trajectory of x2(t) as a
function of time for an initial condition (x1(0),x2(0)) = (ε,0) with ε > 0 and small. [20%]

(d) From your previous analysis, how would you describe the properties of a winner-
take-all model for any n? [10%]

END OF PAPER
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