
Module 4F2 - 2016-2017 - Cribs.

Question 1. Popular question.(a) was well answered in general, but many students
did not take into account the negative sign in the feedback loop. The proof of the identity
in (b) was often incomplete. (c.i) was correctly answered by most, demostrating a good
understanding of the small gain theorem. Very few students answered correctly (c.ii), not
recognizing that an unbounded uncertainty at high frequency is not an issue for stability
if the gain of uncertainty and nominal closed loop transfer function combined is less than
one.

(a.i) The closed loop in Figure 1 is internally stable if all the transfer functions from d1
and d2 to e1, e2, y1, and y2 are in H∞.
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Figure 1: Closed loop system and signals.

Note that [
I −K
G0 I

] [
ē1
ē2

]
=

[
d̄1
d̄2

]
and [

ȳ2
−ȳ1

]
=

[
ē1
ē2

]
−
[
d̄1
d̄2

]
=

([
I −K
G0 I

]
−
[
I 0
0 I

])[
d̄1
d̄2

]
.

Thus, the closed loop is internally stable if and only if[
I −K
G0 I

]−1
=

[
(I +KG0)

−1 K(I +G0K)−1

−G0(I +KG0)
−1 (I +G0K)−1

]
∈ H∞ .

(a.ii) The nominal closed loop system is not internally stable since the transfer function

G0

I +KG0
=

1
s−1

1 + 1
s+1

=
s+ 1

(s+ 2)(s− 1)

is not in H∞ (one unstable pole).

(b.i)

Td→y(s) = − G0K

1 +G0K
= −

k
s−1

1 + k
s−1

= − k

s+ (k − 1)
= − k

k − 1
· 1
s
τ + 1

where τ = k − 1. Thus,

‖Td→y‖∞ =
k

k − 1

(b.ii) Recall that ȳ(s) = Td→y(s)d̄(s). By Parseval’s theorem,

‖y‖22 =
‖ȳ‖22
2π

=
1

2π

∫ ∞
−∞

ȳ(jω)∗ȳ(jω)dω =
1

2π

∫ ∞
−∞

[Td→y(jω)d̄(jω)]∗[Td→y(jω)d̄(jω)]dω

≤ sup
ω
|Td→y(jω)|2 1

2π

∫ ∞
−∞

d̄(jω)∗d̄(jω)dω = ‖Td→y‖2∞
‖d̄‖22
2π

= ‖Td→y‖2∞‖d‖22
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(c.i) Consider the proportional controller K(s) = k > 1. By the small gain theorem
(Theorem 4.2, Handout 1), the closed loop is stable for all ∆ if and only if

‖Tw→z‖∞ <
1

‖∆‖∞
.

Note that z = −G0K(w + z) thus

‖Tw→z‖∞ =

∥∥∥∥ −G0K

1 +G0K

∥∥∥∥
∞

= ‖Td→y‖∞ =
k

k − 1
.

The largest bound on the unstructured uncertainties ∆ is thus

‖∆‖∞ <
k − 1

k
.

(c.ii) Method 1: Using the small gain theorem (Theorem 4.1, Handout 1) the closed loop
is stable if

‖∆Td→y‖∞ < 1 .

From the definition,

‖∆Td→y‖∞ = sup
ω
|∆(jω)Td→y(jω)| ≤ sup

ω
(|∆(jω)||Td→y(jω)|)

=
k

k − 1
sup
ω

ω + 2k

4k

1∣∣∣ jωk−1 + 1
∣∣∣
 =

1

2

k

k − 1
sup
ω

 ω
2k + 1∣∣∣ jωk−1 + 1

∣∣∣
 ≤ 1

2

k

k − 1
.

Thus, for stability we need

k

2(k − 1)
< 1 ⇒ k < 2(k − 1) ⇒ −k < −2 ⇒ k > 2 .

Method 2: using normalized perturbation, redraw the block diagram as shown in
Figure 2 where |∆(jω)| = |∆̃(jω)W (jω)|, ‖∆̃‖∞ ≤ 1 and |W (jω)| ≤ ω+2k

4k . By the
small gain theorem (Theorem 4.2, Handout 1), the closed loop is stable if

‖WTd→y‖∞ < 1

We have that

‖WTd→y‖∞ ≤
k

k − 1
sup
ω

|W (jω)| · 1∣∣∣ jωτ + 1
∣∣∣
 = (. . .) ≤ 1

2

k

k − 1
⇒ k > 2 .
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Figure 2: Closed loop block diagram with normalized perturbations.
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Question 2. There were good attempts at this question by most candidates. A number
of slips in the computation of the perturbations in (a.ii). Most students were able to
derive the expression of b(G0,K) but had issues in computing the final bound. Very few
students addressed correctly part (c), with many mistakes in the computation of the H∞
norm.

(a.i) Take

Ñ(s) =
1

s+ 1
and M̃(s) =

s

s+ 1
.

The factorization is coprime since rank [ Ñ(s) M̃(s) ] = 1 for all s with Re(s) ≥ 0
or s = ∞. The factorization is normalized since M̃(jω)M̃(jω) + Ñ(jω)Ñ(jω)∗ =
ω2

ω2+1
+ 1

ω2+1
= 1.

(a.ii) Take ∆N = 0 and ∆M = α
s+1 . Then,

Ñ + ∆N

M̃ + ∆M

=
1
s+1

s
s+1 + α

s+1

=
1

s+ α
= Gα(s) .

Note that ‖[∆N ,∆M ]‖∞ = supω

√
α2

ω2+1
= |α|.

(b) Closed loop stability is guaranteed for b(G0,K) > ‖[∆N ,∆M ]‖∞. From the block
diagram, the small gain theorem guarantees closed loop stability if the transfer
function Tw→z from w to z = [z1, z2] satisfies

‖Tw→z‖∞ <
1

‖[∆N ,∆M ]‖∞
.

Compute Tw→z (we drop the argument s for readability).

z2 =
1

M̃
(w + ÑKz2) =

(
w

M̃
+G0Kz2

)
=

w

(1−G0K)M̃
; z1 = Kz2

which lead to

z =

[
K
I

]
[I −G0K]−1M̃−1w .

We have that

‖Tw→z‖∞ <
1

‖[∆N ,∆M ]‖∞
⇔

∥∥∥∥[ KI
]

[I −G0K]−1M̃−1
∥∥∥∥
∞
<

1

‖[∆N ,∆M ]‖∞

⇔
∥∥∥∥[ KI

]
[I −G0K]−1M̃−1

∥∥∥∥−1
∞

> ‖[∆N ,∆M ]‖∞

which justifies why b(G0,K) > ‖[∆N ,∆M ]‖∞ guarantees robust stability.

For −1
2 ≤ α ≤ 1

2 , ‖[∆N ,∆M ]‖∞ = |α| ≤ 1
2 . Thus, b(G0,K) > 1

2 guarantees closed
loop stability for any Gα.

(c) Robust stability is guaranteed if b(G0,K) > 1
2 that is ‖Tw→z‖∞ < 2.

For K(s) = −k and G0(s) = 1
s the transfer function Tw→z reads

Tw→z =

[
−k
1

]
1

(1 + k
s ) s
s+1

=

[
−k
1

]
s+ 1

(s+ k)
.
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For k > 1,

‖Tw→z‖∞ = sup
ω

∥∥∥∥[ −k1
]
jω + 1

(jω + k)

∥∥∥∥ =

∥∥∥∥[ −k1
]∥∥∥∥ =

√
k2 + 1

and the bound ‖Tw→z‖∞ < 2 is satisfied for√
k2 + 1 < 2 ⇐ k2 + 1 < 4 ⇐ k2 < 3 ⇐ k <

√
3 .

For 0 < k < 1,

‖Tw→z‖∞ = sup
ω

∥∥∥∥[ −k1
]
jω + 1

(jω + k)

∥∥∥∥ =

∥∥∥∥[ −k1
]

1

k

∥∥∥∥ =

√
1 +

1

k2

and the bound ‖Tw→z‖∞ < 2 is satisfied for√
1 +

1

k2
< 2 ⇐ 1 +

1

k2
< 4 ⇐ 1

k2
< 3 ⇐ k >

1√
3
.

Closed loop stability is thus guaranteed for 1√
3
< k <

√
3.

[Note: a correct but less elegant way to answer part (c) is to study the internal
stability of the closed loop system for different values of k and α. One has to
find the range of gains k that guarantees closed loop stability uniformly in α, for
−1

2 ≤ α ≤ 1
2 .]
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Question 3. The question was generally well answered. Marks were mostly lost in
part (c), because many students failed to acknowledge that the loop transformation of the
transfer function was a simple shift in the complex plane.

(a) The Nyquist curve has a vertical asymptote at s = −3
4 and intersects the real

negative axis at s = −1
6 (see example paper). Nyquist criterion guarantees stability

if k2 < 6. For those values, the equilibrium of the linearised system is exponentially
stable and the nonlinear equilibrium is locally exponentially stable (Lyapunov first
theorem),

(b) The Nyquist plot cannot enter a circle through the two points s = −1/k1 and
s = −1/k2. Here k1 = 0, meaning that the circle degenerates into a left half plane.
This half plane must be to the left of the vertical asymptote, meaning that k2 must
be less than 4/3.

(c) The loop transformation is a parallel loop around H(s) and a feedback loop around
the nonlinearity. The transformed Nyquist plot is shifted to the right half plane,
meaning that H(s) + α becomes positive real, hence passive, whereas the sector
nonlinearity is mapped to the entire first and third quadrant, meaning that the
transformed nonlinearity is strictly passive. After the transformation, stability of
the feedback system follows from the passivity theorem (interconnection of a passive
system with a strictly passive system is strictly passive).

(d) Popov criterion requires passivity of the transfer function 1
k2

+ H(s)(τs + 1) for a
suitably chosen τ . H(s)(τs+ 1) will still have a vertical asymptote but the bound
will be improved if the asymptote is moved to the right. For instance, the choice
τ = 1 results in H(s)(s+1) = 1

s(s+2) , which has a vertical asymptote at −1
4 , leading

to the new bound k2 ≤ 4, a clear improvement on the bound found in (b).

(e) The describing function of the sign nonlinearity is G(A,ω) = 4
πA . Hence the describ-

ing function predicts an oscillation of frequency
√

2rad/sec and amplitude 4
πA = 6,

that is, A = 2
3π . The agreement with the simulation is relatively good. This is

because H(s) has a low pass characteristic.
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Question 4 The question with the lowest mean. Despite the fact that many students
understood the function of the network, determining the equilibria of the system turned
out to be challenging for most students.

(a) In the linear regime, equilibria are solutions of x1 = 2(1−x2), x2 = 2(1−x1), which
has the unique solution x1 = x2 = 2

3 . In the saturated regime, the two equilibria are
(2, 0) and (0, 2). Those two equilibria are stable nodes. The linearisation at those
equilibria is simply δ̇xi = −δxi. The third equilibrium is a saddle. The linearisation
at the saddle is δ̇x1 = −δx1 − 2δx2, δ̇x2 = −δx2 − 2δx1. The stable eigenvector is
aligned with the bisectrix, the unstable eigenvector is orthogonal to it.

(b) The two nullclines are given by the mirrored graph of S, shifted by the value of
ui. In the situation u1 � u2, the nullclines only intersect on the x1-axis, and their
intersection defines a globally asymptotically stable equilibrium. In the situation
u1 ≈ u2, the two nullcines have three intersections that roughly correspond to
the equilibria computed in (a). The resulting phase portrait is the classical phase
portrait of a bistable system, with the stable manifold of the saddle separating the
two basins of attractions of the stable equilibria (one on each axis).

(c) In both situations, the trajectory starts at zero and asymptotically converges to
zero. In the first situation, the trajectory remains at zero because ẋ2 ≡ 0 along
the positive x1-axis. In the second situation, the trajectory slides along the stable
manifold before escaping the saddle along the unstable manifold. For small ε, there
is a long transient plateau transient near 2

3 .

(d) The desired stable equilibria of the WTA network are all nodes stablised at zero
and one winning node stabilised at a value close to the maximal input entry. Hence
the network detects the node with the maximal input. This decision making task
becomes however difficult when there is not a clear winner, a situation illustrated
in the two node network by the role of the saddle. Those features are retained in
higher dimensions as well.

6



trd,ns,v, f


