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EGT3
ENGINEERING TRIPOS PART IIB: SOLUTIONS

Monday 23 April 2018 2 to 3:40

Module 4F8

IMAGE PROCESSING AND IMAGE CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Perception of images is very much concerned with lines and edges. It can be
shown that if we discard the amplitude information present in the 2D FT of an image, we
can still reconstruct a recognisable image due to the fact that edge information is retained
in the phases of the FT.

If a filter phase response is non-linear, then the various frequency components which
contribute to an edge in an image will be phase-shifted with respect to each other in such
a way that they no longer add up to produce a sharp edge – i.e. dispersion takes place.
It is often simplest to enforce the zero-phase condition, i.e. insisting that the frequency
response is purely real, so that

H(ω1,ω2) = H∗(ω1,ω2)

Thus, ensuring that our filters are zero-phase will ensure that we preserve edges – crucial
for image recognition. [10%]

(b) The standard result for the impulse response of this simple ideal lowpass filter is
(see notes, or work it out, or use databook)

h1(n1∆1,n2∆2) =
∆1∆2Ω2

c
(π)2 sinc(Ωcn2∆2)sinc(Ωcn1∆1)

In order to avoid aliasing, we require Ωc < π/∆1 and Ωc < π/∆2, ie sampling rates are
greater or equal to twice the largest frequency present. [10%]

(c) We know that the ideal impulse response, h2(n1∆1,n2∆2) is given by

h2(n1∆1,n2∆2)=
∆1∆2
(2π)2

∫
π/∆2

−π/∆2

∫
π/∆1

−π/∆1
H2(ω1,ω2)e

j(ω1n1∆1+ω2n2∆2)dω1dω2

=
∆1∆2
(2π)2

∫ ∫
R

e j(ω1n1∆1+ω2n2∆2)dω1dω2

where R is the region where H2 = 1. Noting that the lines of the rotated square have
equations ω2 = ω1±Ωs and ω2 =−ω1±Ωs, it seems sensible to change to the following
variables

ω1
′ = ω1 +ω2 and ω2

′ = ω1−ω2

so that the diagonal lines in R become lines of constant ω ′1 or ω ′2. Thus the integral
becomes
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∆1∆2
(2π)2

∫
Ωs

−Ωs

∫
Ωs

−Ωs
e j

ω ′1
2 (n1∆1+n2∆2)e j

ω ′2
2 (n1∆1−n2∆2)|J|dω

′
1dω

′
2

where |J| is the magnitude of the jacobian of the transformation from (ω1,ω2) to (ω ′1,ω
′
2);

|J|=
∣∣∣∣∂ω1

∂ω ′1

∂ω2
∂ω ′2
− ∂ω1

∂ω ′2

∂ω2
∂ω ′1

∣∣∣∣= 1
2 .

Thus, the integral can be evaluated as

∆1∆2
2(2π)2

e j
ω ′1
2 (n1∆1+n2∆2)

j
2(n1∆1 +n2∆2)


Ωs

−Ωs

e j
ω ′2
2 (n1∆1−n2∆2)

j
2(n1∆1−n2∆2)


Ωs

−ΩsGiving
∆1∆2
2(π)2 Ωs

2 sinc(n1∆1 +n2∆2)
Ωs
2

sinc(n1∆1−n2∆2)
Ωs
2

Compare this expression with that for h1 in part (b): we see that the two expressions are
very similar – ie can we simply obtain h2 by considering some form of h1 in a rotated
coordinate system? Clearly, if we look at H1 in coordinates which are ω ′1 = ω1 +ω2 and
ω ′2 = ω1−ω2, we will be looking at a diamond shape as in H2 with Ωs =

√
2Ωc and

sampling intervals which are scaled by a factor of
√

2. Careful substitutions (noting also
that the sampling moves from a rectangular grid to a diamond grid) should then enable us
to obtain h2 from h1.

[30%]

(d) Sketches of h1 and h2 are given below.
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If we were to take a 2D Fourier transform of the brick image in figure 2, we obtain a
number of frequencies as illustrated below (there are many frequencies due to patterns on
a number of scales in such an image)

Filtering with H2 will retain more high frequencies along the axes than filtering with
H1, but will retain fewer regions of the frequency plane which have high frequencies in
both directions. Thus, we might expect H2 to produce an image which does not pick out
diagonal frequencies/patterns as well as H1. [20%]

(e) Taking the inverse FT of the ideal frequency response will give an impulse response
which does not have finite support – to remedy this we multiply by a window function
which forces the impulse response coefficients to zero for (n1,n2) outside Rh, the desired
support region. The actual filter frequency response H(ω1,ω2) is then given by the
convolution of the desired frequency response Hd(ω1,ω2) with the window function
spectrum W (ω1,ω2).

Thus the effect of the window is to smooth Hd – clearly we would prefer to have the
mainlobe width of W (ω1,ω2) small so that Hd is changed as little as possible. We also
want sidebands of small amplitude so that the ripples in the (ω1,ω2) plane outside the
region of interest are kept small.

The two most popular methods of forming 2d windows from 1d windows are

(i) Taking the product of 1d windows:

w(u1,u2) = w1(u1) w2(u2)

(ii) Rotating a 1d window:

w(u1,u2) = w1(u)|u=
√
(u2

1+u2
2)

[10%]
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(f) We know that the 2D spectrum is the product of the 1D spectra.

Wi(ωi) =
∫ Ui

−Ui
cos2

(
πui
Ui

)
e− jωiuidui =

1
4

∫ Ui

−Ui
(2+ e j2πui/Ui + e− j2πui/Ui)e− jωiuidui

using cos2 θ = (1+ cos2θ)/2.

This can then be easily integrated to give:

Wi(ωi) =
Ui
2

(
2 sincωiUi + sinc

[
Ui

(
2π

Ui
−ωi

)]
+ sinc

[
Ui

(
2π

Ui
+ωi

))]
and W (ω1,ω2) =W1(ω1)W2(ω2).

Sketch of the spectrum along the ω1 axis is given below (U1 = 1) – the window shows
reasonable behaviour: it has a mainlobe which is not too wide and sidelobes which show
decent behaviour, though the sidelobes next to the main lobe are not attenuated. Note that
no tuning is possible here so the amplitudes of the sidelobes cannot be reduced at all.

[20%]

This was the least popular question. Parts a) and b) of this question were done well by
almost all candidates. Part c) caused most difficulty – many people tried to do the change
of variables in an ad-hoc fashion, using the given result to guess what they had to do.
Sketching in part d) was also poorly done.

Part e) was bookwork on windowing and was well done by all candidates. Part f) was
less well done, but mostly this appeared to be because time was running out.
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2 (a) (i) A histogram plot of frequency of occurrence of grey levels in an image
against grey level will tell us how much the available grey levels are used. An
intuitively appealing idea would be to apply a transformation or mapping to the
image pixels in such a way that the probability of occurrence of the various
grey levels should be constant, i.e, all grey levels are equiprobable, which would
correspond to a constant amplitude histogram. This process is called histogram
equalisation.
Histogram equalisation is often useful in bringing out detail in images which make
poor use of the available grey levels – this may occur due to poor illumination of
the scene, or non-linearity in the imaging system. [10%]

(ii) The histogram of the image in Figure 3 (of the paper) is shown below. We can
see that the grey levels used are concentrated around the bottom end of the range,
i.e. 1-3, with mid and high levels unused. [10%]

012345678
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40
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[10%]

(iii) It often helps to draw up a table when performing histogram equalisation:
below let H(i) be the frequency values and C(i) be the cumulative frequency values
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i 1 2 3 4 5 6 7 8
H(i) 5 43 16 0 0 0 0 0
C(i) 5 48 64 64 64 64 64 64

The transformed levels are given by

yk =
k

∑
i=1

L
Ni

NM
, k = 1...8

where N×M are the dimensions of the image, Ni is the number of pixels in grey
level i (equivalent to H(i) above) and L is the range in grey level space. Therefore,
L = 8, NM = 64 and

yk =
L

NM

k

∑
i=1

Ni =
1
8

k

∑
i=1

Ni =
1
8

C(k), k = 1...8

We can now add an extra line to our table to show the transformed values:

i 1 2 3 4 5 6 7 8
H(i) 5 43 16 0 0 0 0 0
C(i) 5 48 64 64 64 64 64 64
y(i) 0.635 6 8 8 8 8 8 8

From this table it is now easy to draw the new image and sketch the new histogram

6 6 6 6 6 6 6 6

6 6 6 8 8 8 6 6

6 6 8 8 1 8 8 6

6 6 8 1 1 1 8 6

6 6 8 8 1 8 8 6

6 6 6 8 8 8 6 6

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6
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We can see from the new histogram that the process has succeeded in spreading out
the grey levels more evenly across the scale but that the distribution is far from being
uniform. The discreteness of the problem means that the equalisation process tries
to do the best job it can according to the rules prescribed. The spread of greylevels
can then be improved by interpolation after the histogram equalisation process, if
required. [25%]

(b) (i) For spatially stationary processes x(n), y(n), the cross correlation function is
defined as follows and is ‘translationally invariant’, i.e.

Rxy(0,n)≡ Rxy(n) = E[x(k)y∗(k−n)] ∀k

i.e. the cross-correlation between the origin in the x image and the point n in the y
image is independent of where the origin is taken.
The cross-power spectrum of two jointly stationary processes x(n) and y(n) is
written as Pxy(ω) and is given by the FT of the cross-correlation function

Pxy(ω) = FT (Rxy(n))

Note here that the following convention for the cross correlation (denote as R+
xy) is

also fine
R+

xy(n)≡ Rxy(−n) = E[x(k)y∗(k+n)] ∀k
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[10%]

(ii) We choose the filter impulse response g(q) such that the expectation of the
squared error is minimised.

Minimise Q = E{[x(n)− x̂(n)]2}

= E


x(n)− ∑

q∈Z2
g(q)y(n−q)

2


Differentiate this objective function with respect to g(p)

∂Q
∂g(p)

= E

{
2

[
x(n)− ∑

q∈Z2

g(q)y(n−q)

]
[−y(n−p)]

}
= 0 ∀p ∈ Z2

∴ E{x(n)y(n−p)}= ∑
q

g(q)E{y(n−q)y(n−p)}

If the images are spatially stationary (with x and y real), we can then write:

E{x(n)y(n−p)}= Rxy(p)

If we rewrite y(n−p) as y(n−q+q−p), the expectation in the RHS of the earlier
equation becomes

E{y(n−q)y(n−p)}= E{y(n−q)y(n−q+q−p)}

= E{y(k)y(k+q−p)}= Ryy(p−q)

∴ Rxy(p) = ∑
q

g(q)Ryy(p−q) ∀p ∈ Z2

Taking the Fourier transform of the above equation will lead (after some
manipulation) to the form of the Wiener filter (frequency domain) given. [30%]

(iii) Following derivation not necessary, but if candidates don’t remember the final
result then they will have to go through it: [Derivation:

Ryy(p) = E{y(n)y(n−p)} where y(n) = ∑
m

h(m)x(n−m)+d(n)

So, if signal and noise are uncorrelated (so that the cross terms are zero) and noise
is zero mean:

Ryy(p) = E

{
∑
m

∑
q

h(m)x(n−m)h(q)x(n−p−q)

}
+E {d(n)d(n−p)}
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= ∑
m

∑
q

h(m)h(q)E {x(n−m)x(n−p−q)}+Rdd(p)

∴ Ryy(p) = ∑
m

∑
q

h(m)h(q)Rxx(p+q−m)+Rdd(p)

as E {x(n−m)x(n−p−q)}= E {x(n−m)x(n−m− (p+q−m))}
Now take the Fourier transform of each side to give:

Pyy(ω) = ∑
p

{
∑
m

∑
q

h(m)h(q)Rxx(p+q−m)

}
e− jωT p +Pdd(ω)

where Pdd is the FT of the autocorrelation function of the noise. Interchange order;

Pyy(ω) = ∑
m

∑
q

h(m)h(q) ∑
p

Rxx(p+q−m)e− jωT p +Pdd(ω)

Let k = (p+q−m), then:

Pyy(ω) = ∑
m

∑
q

h(m)h(q) ∑
k

Rxx(k)e− jωT (k−q+m)+Pdd(ω)

∴ Pyy(ω) =

{
∑
m

h(m)e− jωT m
}{

∑
q

h(q)e jωT q

}{
∑
k

Rxx(k)e− jωT k

}
+Pdd(ω)

end derivation]
∴ Pyy(ω) = |H(ω)|2 Pxx(ω)+Pdd(ω)

as h is real. Reiterate we are assuming that the signal and noise are uncorrelated
and that the noise is zero mean. [15%]

This was the most popular question and was done by almost all candidates. Part a)
on histogram equalisation in images was uniformly well done – clearly everyone had
revised this. Part b) was less well done, but as it was mainly bookwork, many people had
thoroughly revised the ideas behind Wiener filtering and everyone managed some marks.
Sub-part (ii) caused most trouble – of those who got through the derivation, many forgot
to state the assumptions they made.

3 (a) The key characteristics of vision that are exploited in image compression are:

(i) The human visual system (HVS) is much more sensitive to overall intensity
(luminance) changes than to colour changes. Usually most of the information about
a scene is contained in its luminance rather than its colour (chrominance).

(ii) The bandwidth of the HVS for luminance components is much wider than for
chrominance (typically about 5 times as wide).
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(iii) The contrast sensitivity of the HVS for luminance is also around 3 times better
than red-green sensitivity and around 6 times better than blue-yellow.

(iv) The luminance sensitivity also drops off at low spatial frequencies, but only
if there is no temporal fluctuation (flicker).

(v) Activity masking occurs, such that in the presence of high image activity (eg a
strong texture) it is much more difficult to notice coding distortions than in smooth
areas of low activity.
These characteristics are exploited by performing a transformation from RGB to
YUV colour space, and by using a lower sampling rate and coarser quantisation for
the colour channels. Also the quantisation step size may be designed to adapt to
local image activity levels to take advantage of activity masking. [20%]

(b) If T is an orthonormal matrix, T T T = I:

1
2

[
1 1
1 −1

][
1 1
1 −1

]
=

1
2

[
2 0
0 2

]
= I

T is therefore orthonormal.

The 2-D Haar transform of X is given by

Y = T X T T =
1
2

[
1 1
1 −1

][
a b
c d

][
1 1
1 −1

]

=
1
2

[
1 1
1 −1

][
a+b a−b
c+d c−d

]
=

1
2

[
a+b+ c+d a−b+ c−d
a+b− c−d a−b− c+d

]

Since Y = T X T T , we see that T TY T = (T T T )X(T T T ) = X , as T is orthonormal; X can
therefore easily be obtained from the transform Y using T .

We have seen that the Haar matrix, T , is orthonormal; therefore the inner product of any
two different columns or rows is zero, and the inner product (energy) of each row/column
with itself is unity. It is well known that multiplying a vector or matrix by an orthonormal
(or unitary) matrix preserves the energy of the input vector or matrix. We see this by
considering the energy of y = T x

yT y = xT T T T x = xT Ix = xT x

since T T T = I. [20%]
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(c) To apply the Haar transform to a complete image, we group the pixels into 2× 2
blocks and apply the transform to each block – we then group all top left components into
a subimage, all top right components into a subimage etc; giving us 4 subimages.

• Consider the top left coefficients from each 2×2 image block. These represent half
the sum of the four pixels in each block, which represents an averaging or lowpass
filtering of each block. Hence the top left subband is a slightly blurred version of
the original image, scaled up in amplitude by a factor 2, but reduced in size by 2:1
horizontally and vertically.

• The top right coefficients can be written a+c
2 −

b+d
2 , which measures the mean

horizontal gradient of each 2×2 block. Hence this subband picks out vertical edges
in the image, where pixels a and c are significantly different from pixels b and d.

• The lower left coefficients can be written a+b
2 −

c+d
2 , which measures the mean

vertical gradient of each 2×2 block. Hence this subband picks out horizontal edges
in the image, where pixels a and b are significantly different from pixels c and d.

• The lower right coefficients can be written a+d
2 −

b+c
2 , which measures the

diagonal curvature of each 2× 2 block. Hence this subband picks out corners and
textures in the image, where pixels a and b are significantly different from pixels c
and d.

Most of the energy (generally over 90%) is contained in the lo-lo (top left components)
subimage and similarly, lo-lo typically contains over 50% of the entropy.

Since this top left subimage is the result of lowpass filtering in both directions, it has
similar characteristics to the original image (except that it is smaller). Image compression
techniques can therefore usefully be applied to this lo-lo subimage. [20%]

(d) Suppose we quantise both the original image, X , and the transformed image,
Y , with a given step size Qstep. We know that the Haar transform preserves energy.
Quantising errors can be modelled as independent random processes with variance
(energy) = Q2

step/12 [recall IB Comms] and the total squared quantising error (distortion)
will tend to the sum of variances over all pixels. This applies whether the energies are
summed before or after the inverse transform (reconstruction) in the decoder. Hence
equal quantiser step sizes before and after an energy-preserving transform should generate
equivalent quantising distortions.

We saw in part (c), that the top left subimage has similar characteristics to the original
image but is smaller. We may then apply the Haar transform again to this subimage,
splitting it into four more bands. The lowpass result of this second stage may be further
decomposed by a third Haar transform, and so on for as many levels as required. The
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energy compaction properties of the transform are improved by each of the first few levels
(typically four), but beyond that there is virtually no additional gain. These multi-level
transforms are a key feature of most image compression algorithms: we can compress our
data by compressing the subimages which contain most of the energy. [20%]

(e) When subbands are quantised severely, the coefficients from the finer levels are
often set to zero, so the reconstructed image is largely made up from basis functions of
the lowpass subbands. At level 1 the Haar lowpass basis functions are just 2× 2 blocks
of equal pixels, and at coarser levels the block size increases to 4× 4, 8× 8 etc. Hence
the image is made up from different sized block patterns, giving it a somewhat ‘blocky’
appearance, with larger blocks in areas of greater smoothness in the original image.

The sum and difference operations of the Haar transform may be regarded as simple
types of FIR filters, applied to the rows and columns of the image. To avoid the ‘blocky’
artifacts, we must modify these filters so that they have smoother responses. Wavelet
concepts allow us to do this. Using the concept of a two-band filter bank with perfect
reconstruction inverse filters, it is possible to design filters which have much better
smoothness than the Haar filters by forcing them to have multiple zeros at z = −1 in
the z-plane. This makes the filters more complex but gives quantisation artifacts which
are less visible because the lowpass basis functions have smooth boundaries, rather than
the sharp edges of the Haar functions. [20%]

This was the second most popular question, and was largely well done. The question
was predominantly bookwork. Strangely, part (a), which should have been the easiest
part, was the part with the lowest average, with most people simply giving one or two
characteristics of the human visual system.

4 Note: this question discusses the 1D cases – since when applying to an image, the
rows and columns are done separately, so it is effectively two 1D transforms.

The figure below sketches the main components of an encoder-decoder system.

(a)
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The compression and reconstruction blocks will be transforms that concentrate a high
proportion of the image energy into as few coefficients as possible, while preserving
energy.

The quantiser represents coefficients to a given level of accuracy and should be set so as
to control the trade-off between distortion and bit rate. The inverse quantiser gives the
best estimate of the image transform given the decoded data.

The coder encodes the output of the quantiser into a bit stream – this should attempt to
minimise the total number of bits based on the statistics of various classes of samples.

The compression/reconstruction and the coding/decoding should all be lossless. It is only
the quantiser that introduces loss and distortion.

Perfect Reconstruction in such a system refers to the transform and inverse transform
blocks – this means they are lossless and the input can be recovered exactly from the
output. In this case, it is indeed only the quantiser step that introduces loss and distortion.

[20%]

(b) A sketch of a two-band analysis/reconstruction filter bank system is shown in the
figure below( (a) shows analysis and (b) shows reconstruction).

The downsamplers by 2 omit all samples y(n) when n is odd.
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The upsamplers by 2 insert zeros in place of the missing odd-numbered samples.

The downsamplers and upsamplers are used to avoid redundancy in the two systems. [20%]

(c) We are given that ŷ(n) = y(n) when n is even and ŷ(n) = 0 when n is odd. We know
that

Y (z) =
∞

∑
−∞

y(n)z−n ≡ ∑
n even

y(n)z−n

= ∑
all n

1
2
[
y(n)z−n + y(n)(−z)−n]

=
1
2 ∑

all n
y(n)z−n +

1
2 ∑

all n
y(n)(−z)−n

=
1
2
[Y (z)+Y (−z)]

[15%]

(d) For the filter banks in part (b) we have

Y0(z) = H0(z)X(z) and Y1(z) = H1(z)X(z)

Ŷ0(z) =
1
2
[Y0(z)+Y0(−z)] and Ŷ1(z) =

1
2
[Y1(z)+Y1(−z)]

and

X̂(z) = G0(z)Ŷ0(z)+G1(z)Ŷ1(z)

Combining these expressions we have:

X̂(z) =
1
2

G0(z) [H0(z)X(z)+H0(−z)X(−z)]+
1
2

G1(z) [H1(z)X(z)+H1(−z)X(−z)]

=
1
2

X(z) [G0(z)H0(z)+G1(z)H1(z)]+
1
2

X(−z) [G0(z)H0(−z)+G1(z)H1(−z)]

For antialiasing, the X(−z) term must be zero and so we require that

G0(z)H0(−z)+G1(z)H1(−z) = 0

For perfect reconstruction, the X(z) term must be multiplied by unity, so we require that

G0(z)H0(z)+G1(z)H1(z) = 2

[25%]
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(e) To satisfy the antialiasing condition and make G1(z) and H1(z) highpass when
G0(z) and H0(z) are lowpass, we let

G1(z) = zkH0(−z) and H1(z) = z−kG0(−z)

with k being an odd integer (usually ±1).

Then the perfect reconstruction (PR) condition becomes

G0(z)H0(z)+G0(−z)H0(−z) = 2

or
P(z)+P(−z) = 2

since P = G0H0.

For symmetric left/right and up/down filter behaviour in images, we usually assume
linear-phase filters, so that p−n = pn.

The PR condition causes all odd coefficients pn in P(z) to be cancelled when it is added
to P(−z), so it only constrains the even coefficients.

Hence p0 = 1 and p2, p4, p6, ... are all zero. Thus P(z), with symmetry, will be of the
form

P(z) = . . .+ p5z5 + p3z3 + p1z1 +1+ p1z−1 + p3z−3 + p5z−5 + . . .

The design process is to find a good set of coefficients, {p1, p3, p5, . . .}, such that P(z)
is a well-shaped lowpass filter that can be factorised into two lowpass filters H0(z) and
G0(z).

[20%]

All parts were essentially bookwork and were done well. Even part (d), which was
reasonably involved (deriving the anti-aliasing and perfect reconstruction conditions for
filter banks), was done perfectly by most.

END OF PAPER
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