May 8, 2017 4B21 CRIB

Question 1

(a) Ideal voltage source is one where the voltage acro	oss it is independent of the current through it.
Ideal current source is one where the current thro	bugh it is independent of the voltage across it.
	[10 marks]
(b) Hybrid- π and T-equivalent circuits are as shown b	elow
	[20 marks]
Ougust resistance when driven by ideal	
- roltage fource : B	Nx/ix = Yent = 1etto
Use include T: Inter the VE (F)	
at 0/p and 1/p s/c = 5	$(S_{m} + (1 - \alpha)) = \beta + 1$
	multiple rate (B+1) / retrol
- We/ix - rout, Ar =0 and therefore	
Vent = Vo = OOKSZ	$(\beta + 1) = \pi$
	So rent = KT + (BH) Vo
Output sesistance when driven by an ideal	= 1k + (101)(100k)
current source - use Tmodel with test	=
Source at 0/p and current Source becomes %	
ainty lix lx=xie-ie=flagie	
B Sr (+)to -0	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
te t	
Substituting O into 2	{50 marks)
$(V_{x} = (V_{e} + v_{e}) \xrightarrow{V_{x}} \rightarrow V_{x} = (v_{e} + v_{e}) \xrightarrow{V_{x}}$	
(+	
(c) (ii) The common-base amplifier, when driven by lo	ow source resistance, behaves as a voltage
amplifier. On the other hand, with high source resist:	ance it behaves like a current followor. This
ampliner. On the other nand, with high source resiste	ance, it behaves like a current follower. This

amplifier. On the other hand, with high source resistance, it behaves like a current follower. This transition takes place when the source resistance is at the vicinity of the emitter resistance, r_e. [20 marks]

4B21 Question 2

(a)	Gate-to-channel capacitance: linear region, $Cgs = Cdg = (1/2)$ WLCox; $Cox \sim 1 \text{fF}/\mu\text{m2}$ Gate-to-channel capacitance: saturation region, $Cgs = (2/3)$ WLCox = $Cdg = 0$					
[25%]	Overlap capacitance (~1-10 fF): $Cgs = Cdg = WL_D$ where L_D = overlap length Source and drain junction capacitances C_{sb} and C_{db} (voltage-dependent) due to the depletion layer between S and D, and bulk (substrate)					
	S gette p G P Fixe P 1. Mt Scher-7- Gal Nt) Csb depletion Cdb Larger					
(b)	Equivalent circuit with the important C's. Here S is connected to the substrate (B) and					
[20%]	C _{sb} , C _{db} , C _{gb} neglected to simplify analysis for unity gain frequency calculation $G \xrightarrow{c_{gd}} v_{gs} \xrightarrow{c_{gd}} c_{gs}$					
	s s $i_0/i_{in} = g_m / [s(C_{gs} + C_{gd})]$ and current gain becomes unity when $\omega_T = g_m / [C_{gs} + C_{gd})$					
(c) (i)	The Miller approximation sumes $v_0 = -g_m \mathbf{R}_1 v_{12} \rightarrow w_0$ neglect the effect of C_1					
	This yields $f_H = 1/(2\pi C_{in}R_S)$ where $C_{in} = Cgs + Cgd (1+g_mR_L) = 20 + 5(1+1.25x10) =$					
[20%]	87.5 pF. Thus $f_H = 181.9 \text{ kHz}$					
(c) (ii)	Gain = $-g_m R_L = -1.25 \times 10 = -12.5 \text{ V/V}$					
[1 = 0 /]	Thus gain-bandwidth product is $12.5 \times 181.9 \text{ MHz} = 2.3 \text{ MHz}$					
[15%]	Gain can be reduced by reducing P _x through shunting the output with a lower load					
(c) (m)	resistance.					
[20%]	Alternatively the overdrive voltage $(V_{GS}-V_T)$ can be increased by raising the bias current.					

3

4B21 Question 3

Assume all transistors are matched.

(a)	A multistage amplifier has several circuit blocks connected in cascade; for example,								
[10%]	the output of first stage becomes input of second stage and its output becomes input of								
[]	the following stage and so on.								
(b)	A multistage	amplifier	has many	desirable	circuit cł	naracteris	tics that	a single s	tage
[20%]	does not. For example, it provides higher input-output isolation, higher input								
	impedance, lower output impedance, higher gain, larger common-mode rejection, DC								
	level-shifting, and possibly also higher bandwidth.								
(c) (i)	V-lass of I	X7 X7	1 .						
	Values of I _D , $ V_{OV}, V_{GS}, g_m$ and r_o								
[40%]	I (A)	<u>Q1</u> 45	<u>Q2</u>	<u>Q</u> 5	<u>Q4</u>	<u>Q5</u>	<u></u> 00	<u>Q</u> /	<u>Q8</u>
	$I_{\rm D} (\mu A)$	45	45	45	45	90	90	90	90
	$\mathbf{V}_{OV}(\mathbf{V})$	0.15	0.15	0.5	0.5	0.15	1	0.15	0.13
	$\mathbf{v}_{GS}(\mathbf{v})$	-0.95	-0.95	1	1	-0.95	1	-0.93	-0.95
	$\frac{g_{\rm m}({\rm IIIA}/{\rm V})}{r_{\rm c}(k\Omega)}$	222	222	222	222	1.2	111	1.2	1.2
	$I_0(\mathbf{K}\mathbf{S}\mathbf{Z})$					111	111	111	111
(c) (ii)									
(c) (n)	Voltage gain of 1 st stage is $A_1 = -[g_{m1}(r_{o2}//r_{o4})] = -0.6 (222//222) = -66.6 V/V$								
[100/]	Voltage gain of 2 st stage is $A_2 = -[g_{m6}(r_{66}//r_{07})] = -0.6 (111//111) = -33.3 V/V$								
[10%]	Thus the overall dc open-loop voltage gain = $A_1A_2 = 2218$ V/V.								
			_						
(c) (iii)	The lower limit of the input common-mode range is set by Q1 and Q2 leaving the								
	saturation - o	ccurs who	en the inpu	it voltage i	falls belo	w the vol	tage at tl	ne drain o	of Q1 by
[10%]	Vtp volts. Since the drain of Q1 is at -2.5+1= -1.5V, then the lower limit is -2.3V.								
	The upper limit of the input common-mode range is set by Q5 leaving saturation. To								
	remain in saturation, its V_{DS} should be at least equal to the overdrive V_{OV} i.e.								
	0.15V. Thus the highest voltage permitted at the drain of O5 is 2.35V.								
	Thus the input common-mode range is $2.35-0.95 = 1.4V$								
(c) (iv)									
	Highest allow	able out	out voltage	is when (07 leaves	saturatio	n, i.e. V	DD–IVov	$ z_7 = 2.5 -$
[100/,1	$0.15=2.35$ V Lowest allowable output voltage is when 0.6 leaves saturation i.e. $-V_{sc}$.					$-V_{ss} +$			
[10\0]	$V_{OV6} = -2.5\pm0.3 = -2.2V$ Thus the output voltage range is $-2.2V$ to $\pm 2.35V$								
	,0,0 - 2.5	0.5- 2.2	••••••••••••••••••••••••••••••••••••••	e Suiput v			2,0012		

4B21 Question 4

(a) The input to a DAC is a digital word consisting of parallel binary signals generated by a digital system. The corresponding output may take the form of a current or a voltage, but in either case is generated by scaling a reference.

A DAC with voltage output can be characterised by the block diagram shown. The voltage output V_{OUT} can be expressed as:

$$V_{OUT} = K_V V_{REF} D$$
, or $I_{OUT} = K_I V_{REF} D$

where K_V and K_I are scaling factors, and D is a digital word given as:

$$\mathbf{D} = \frac{b_0}{2^1} + \frac{b_1}{2^2} + \frac{b_2}{2^3} + \dots + \frac{b_{N-1}}{2^N}$$

DAC Block Diagram

Charge-Scaling DACs

A popular implementation of DACs in CMOS technology is the charge-scaling approach. It is popular because of its structural simplicity and relatively good accuracy – resolutions in the 10 to 12-bit range can be achieved. The charge-scaling DAC operates by binarily dividing the total charge applied to a capacitor array, in effect implementing a digitally controlled voltage attenuator.

Binary weighted capacitors

A parallel array of capacitors with binary-weighted values is used, as shown above, with one terminal of each connected to a unity-gain buffer amplifier with intrinsic very high input impedance. Each capacitor's second terminal is connected to one of a set of digitally-controlled electronic switches, each controlled by the state of a corresponding data bit (D_{N-1} to D_0). If the data bit is 0, the connection is to ground, and if it is 1, the connection is to a precise voltage reference V_{REF} . An additional terminating capacitor C is connected at the output of the array. The total capacitance is therefore $2^N C$, where C is a unit capacitance of a convenient value.

The resulting situation can be expressed by summing the charge in the V_{REF} -connected capacitors and evaluating the net potential when that charge is applied to the total capacitance $2^{N}C$. The ratio between v_{OUT} and V_{REF} due to the *k*-th capacitor may be written:

$$v_{OUT} = \frac{2^{k}C}{2^{N}C} \times V_{REF} = 2^{k-N}V_{REF},$$

it being assumed that the k-th bit, D_k , is 1, and all other bits are zero. Superposition then shows that the value of v_{OUT} for any digital input data word is:

$$v_{OUT} = \sum_{k=0}^{N-1} D_k 2^{k-N} \times V_{REF}$$

A two-phase non-overlapping clock ϕ is required to control the state of the switches.

Its characteristics are shown in here. It can be seen that two distinct phases are defined, according to which of the signals φ_1 and φ_2 is active (normally taken as logic 1).

Consider the initial condition, which is the interval when φ_1 is active. The top and bottom plates of all capacitors in the array are grounded, and all capacitors discharged. When φ_2 is active (and by definition φ_1 is inactive), those capacitors connected to switches whose data inputs are 1 become charged to V_{REF} , while those with control inputs set to 0 remain uncharged. [10%]

(ii) **Problem section**

With D3 set to 1 and all other bits set to zero, the resultant equivalent circuit is shown below. The circuit can be considered as a voltage divider.

The expression for the voltage at the input to the unity-gain buffer (also v_{OUT}) is:

Cancelling *C* and *V*_{REF}, and solving, $C_A = \frac{4C}{3}$

(TURN OVER

5 [40%] This value holds good for a 4-bit converter. A different value for C_A is needed for converters of other resolutions implemented using the split-array architecture. [20%]

(iii) If D1 = 1 and all other inputs are 0, the new equivalent circuit is as shown below left, with the attenuation capacitor shown, $C_A = \frac{4C}{3}$.

 $V_{REF} \xrightarrow{2C} V_{A} \xrightarrow{\frac{4}{3}C} V_{OUT}$

This equivalent circuit can be further simplified using a Thevenin approach to the circuit below, which can be evaluated more simply as a charge-scaled divider. The voltage at the buffer input (and hence v_{OUT}) is:

[10%]

$$\overline{\downarrow}^{2C} \overline{\downarrow}^{3C} \overline{\downarrow}^{2C}$$

$$v_{OUT} = \frac{(4C \text{ in series with } 4C/3)}{(4C \text{ in series with } 4C/3) + 3C} \times \frac{V_{REF}}{2}$$

$$4C \text{ in series with } 4C/3 \text{ is } \frac{4 \times 4/3}{4 + 4/3}C = C; \text{ hence}$$

$$v_{OUT} = \frac{C}{C+3C} \times \frac{V_{REF}}{2} = \frac{V_{REF}}{8} \text{ (as expected).}$$

(iv) Advantages of split-array

As the number of bits increases, the ratio of the MSB capacitor to the LSB capacitor becomes large. For example, if the unit capacitor C were chosen to be 0.5 pF and a 16-bit DAC was to be designed, the MSB capacitor would need to be:

$$C_{MSB} = 2^{N-1} \times 0.5 \text{ pF} = 16.384 \text{ nF}$$

This is a large value, difficult to realise on-chip. In a typical process with layer-to-layer capacitance of 0.5 $fF/\mu m^2$, the area required would be approximately $3 \times 10^7 \mu m^2$, or over 5mm square. The total capacitance needed would in fact be almost twice this when all capacitors are taken into account.

It is possible to reduce total capacitance required by splitting the array into two (or more) parts. In the example given, a 4-bit converter is achieved using two 2-bit sub-arrays, one handling the 2 MS bits, the other the 2 LS bits. The largest capacitor needed is 2C. In a non-split design, the largest would be 4C. This advantage also applies to higher resolution converters with more bits, where a substantial reduction in total C (and hence chip area) can be obtained. [10%]

(v) **Precision**

The precision achieved depends on the accuracy with which the capacitors can be defined.

For example, the diagram below shows a 3-bit binary capacitor array using three capacitors, C, 2C and 4C. When the capacitors are fabricated, undercutting of the mask will affect each to a different extent dependent

on its perimeter, and will cause an error in the ratio of the capacitor values, potentially leading to errors in linearity as *N* increases.

A simple solution is the use of unit capacitors of identical dimensions wired together in groups of 2, 4, 8 ... etc. Undercutting then affects all capacitors identically, and the ratios between capacitors are maintained.

(a) Layout of a binary-weighted capacitor array using individual capacitors. Undercutting affects each differently.

(c) Using common-centroid layout to minimise variations due to oxide thickness gradients.

Even if this approach is taken, non-uniformities in the oxide thickness may lead to a gradual variation in the specific capacitance of the dielectric with position (referred to as gradient errors). This can be combatted by the use of a common-centroid layout scheme, with the various capacitors similarly disposed around a common centre point. To first order, errors due to gradual variation in oxide thickness average out to be the same for each capacitor.

A further limitation of this architecture arises because of the existence of a parasitic capacitance, which may be significant, at the input of the buffer amplifier. This limits its use as a high-resolution data converter. [10%]

4B21 Question 5

(c)	Assume no gate current noise (since its connected to a low impedance signal
	source) and operation at high enough frequencies so that flicker noise is negligible.
[30%]	Output noise voltage $\langle v_0^2 \rangle / \Delta f = 4 kT (2g_m/3) R_L^2 = (4kT/q) (2g_m/3) qR_L^2$.
	With g_m = 1.25 mA/V² and R_L =100 k Ω , $<\!\!v_o^2\!\!>\!\!/\Delta f$ = 0.133x10^{-12} V²/Hz and
	$(\langle v_0^2 \rangle / \Delta f)^{1/2} = 0.365 \times 10^{-6} V / \sqrt{Hz}$. Hence EIN = $(\langle v_0^2 \rangle / \Delta f)^{1/2} / A_V =$
	$0.365 \mathrm{uV}/\sqrt{\mathrm{Hz}/200} = 1.8 \mathrm{nV}/\sqrt{\mathrm{Hz}}.$
(d)	Noise Figure is a figure of merit characterizing how noisy an amplifier is with
	respect to an ideal (noiseless) amplifier.
[10%]	$NF = 20 - 20\log \frac{S_{vo}}{N_{vo}}$ (the 20 comes from $S_{vi} = 10N_{vi}$)
	S_{vo} , N_{vo} are from measurements.
(e)	The first amplifier should have the lowest noise figure to obtain the lowest overall
	noise figure. Gains of A, B, C are 4, 16 and 100, respectively. Thus A should be the
[20%]	lowest in the cascade. For the 2^{nd} amp in the cascade, the choice is between B or C.
	If we choose the order A, B, C then the overall noise figure is $NF = NF_A + (NF_B - NF_A)$
	1)/ G_A + (NF _C -1)/ G_AG_B = 1.997. If we choose A, C, B, then the overall noise figure
	along similar lines is 2.475. Hence the order A, B, C yields the lowest overall NF.

END OF PAPER