
Worked solutions for 4B23 Optical Fibre Communication 2017/18 paper 
 

1.  (a) In a step index optical fibre the dimensionless parameter, the normalised 
wavenumber 𝑉 determines the number of modes that the fibre supports. For a given 
value of 𝑉 by considering the zeros of the first order Bessel function 𝐽𝑛(𝑥) the exact 
number of modes can be calculated. For the linearly polarised modes 𝐿𝑃𝑚𝑛 the 
approximate number of modes scales as 𝑁 ≈ (𝑉/𝜋)2 whereas for true modes the 
number of modes scales as 𝑁 ≈ 0.5 × 𝑉2, however in both cases the number of 
modes scales quadratically with 𝑉. 
 
If 𝑑 is the diameter of the core (measured in µm) then the 𝑉 number is given by 
 

𝑉 =
𝜋𝑑

𝜆
√𝑛𝑐𝑜

2 − 𝑛𝑐𝑙
2  

 
Where 𝜆 is also measured in µm. Hence if the 𝐿𝑃11 cut-off wavelength is set as 1260 
nm then at this point 𝑉 = 2.405 and hence  
 

2.405 =
𝜋𝑑

1.260
√1.4552 − 1.4502 

i.e. 

𝑑 =
2.405 × 1.260

𝜋√1.4552 − 1.4502
=

2.405 × 1.26

𝜋 × 0.1205
= 8.0 𝜇𝑚 

 
(b)      The time averaged power density is given by  
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1

2

𝐸2

𝜂
=

1

2

𝑛𝐸2

𝜂0
 

Therefore 
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Hence the total power is 
  

𝑃 = ∫ 𝑆(𝑟) × 2𝜋𝑟
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But 𝑟0
2 =

𝑎2

ln 𝑉
 therefore  

 

𝑃 =
𝜋𝑛𝑐𝑜𝐸0

2

4𝜂0

𝑎2

ln 𝑉
 

 

(c) Scattering is proportional to 𝐸(𝑎) = 𝐸0exp (−𝑎2/𝑟0
2) but 𝑟0

2 =
𝑎2

ln 𝑉
 therefore 



 

𝐸(𝑎) = 𝐸0 exp(− ln 𝑉) =
𝐸0

𝑉
 

But also we have  

𝑃 =
𝜋𝑛𝑐𝑜𝐸0

2

4𝜂0

𝑎2

ln 𝑉
 

And so 
 

𝐸0
2 =

4𝜂0𝑃 ln 𝑉

𝜋𝑛𝑐𝑜𝑎2
 

 

Therefore 𝐸(𝑎) =
1

𝑉
√

4𝜂0𝑃 ln 𝑉

𝜋𝑛𝑐𝑜𝑎2  

 
To determine the maximum value of this maximise the function 𝑓(𝑉) = 𝐸(𝑎)2 
 

𝑓(𝑉) =
4𝜂0𝑃

𝜋𝑛𝑐𝑜𝑎2

ln 𝑉

𝑉2
 

 
Hence  

𝑑𝑓(𝑉)

𝑑𝑉
=

4𝜂0𝑃

𝜋𝑛𝑐𝑜𝑎2
(

−2

𝑉3
ln 𝑉 +

1

𝑉

1

𝑉2
) =

4𝜂0𝑃

𝜋𝑛𝑐𝑜𝑎2𝑉3
(1 − 2 ln 𝑉) 

 
For a maximum  

𝑑𝑓(𝑉)

𝑑𝑉
= 0 

and hence 
1 − 2 ln 𝑉 = 0 

 
i.e. 

2 ln 𝑉 = 1 
So 

ln 𝑉2 = 1 
and hence 

𝑉2 = exp (1) 
 
as required. The reason for the maxima is that when 𝑉 is large the power is confined 
tightly to the core so that little power is present at the core cladding interface 
whereas when 𝑉 is low the power is weakly guided so that the power density at the 
core cladding interface is also low. In between these two extremes a maximum is 
observed. 
 
(d) Since then  

𝑃 =
𝜋𝑛𝑐𝑜𝐸0

2

4𝜂0

𝑎2

ln 𝑉
 

 



When 𝐸0 = 107 V/m, 𝑎 =4 µm, 𝜂0 = 377Ω, 𝑛𝑐𝑜 = 1.455 and noting at 𝜆 = 1550 
nm that 𝑉 = 2.405 × 1260/1550 = 1.955 gives 
 

𝑃 =
𝜋 × 1.455 × 1014 × (4 × 10−6)2

4 × 377 × ln 1.955
= 7.2𝑊 

 
Noting that due to the logarithm the power will not vary significantly with 
wavelength and as such we can assume this limit is constant in the C-band from 
1530 nm to 1565 nm. 
 
We assume the capacity is limited by Shannon and that for one polarisation the 
signal to noise ratio is given by the number of photons per symbol and a data rate 𝐵 
occupies a minimum optical spectrum of 𝐵 and hence 
 

𝑆𝑁𝑅 =
𝑃/2

ℎ𝜈𝐵
=

𝑃

2ℎ𝜈𝐵
 

Therefore  

ℎ𝑣 = 6.626 × 10−34 ×
3 × 108

1550 × 10−9
= 1.3 × 10−19 

 

and 𝐵 = 3 × 108 × (
1

1530×10−9 −
1

1565×10−9) = 4.4 THz 

 
therefore 

𝑆𝑁𝑅 =
7.2

2 × 1.3 × 10−19 × 4.4 × 1012
= 6.3 × 106 

 
Hence capacity per polarisation is  
 

𝐶 = 4.4 × 1012 log2(1 + 6.3 × 106) = 99.4 × 1012 bits/s 
 
And hence for two polarisations 199 Tbit/s 

  



2. (a) The algorithm to efficiently implement this filter uses the frequency domain to 
implement convolution with an example being the overlap and save algorithm which 
is as follows for a filter of length 𝑁𝑓 with and FFT of length 𝑁 

1. Append 𝑁 − 𝑁𝑓 zeros to the tap weights get an array of length 𝑁 which 

we then transform into the frequency domain (using a 𝑁 point FFT). This 
transformation is done just once as such it can be neglected insofar as the 
computational cost (since fundamentally this is just an alternative way of 
representing the tap weights). 

2. Take the block of data of length 𝑁, e.g. 𝐱𝟎 = (𝑥[0], 𝑥[1], … 𝑥[𝑁 − 1]). 
The FFT this block using a 𝑁 point FFT. An 𝑁 point FFT requires 
(𝑁/2) log2 𝑁 complex multiplications 

3. The taps in the frequency domain from stage (1) are multiplied by the 
data in the frequency domain from part (2). This requires 𝑁 complex 
multiplications 

4. The resulting vector is then transformed back into the time domain using 
a 𝑁 point IFFT, which we can denote 𝐱′𝟎 = (𝑥′[0], 𝑥′[1], … 𝑥′[𝑁 − 1]), 
again requiring  (𝑁/2) log2(𝑁) complex multiplications 

5. Discard the first 𝑁𝑓 − 1 samples and output the last 𝑁 − 𝑁𝑓 + 1 samples 

to give  

𝐲𝟎 = (𝑦[0], 𝑦[1], … , 𝑦[𝑁 − 𝑁𝑓]) = (𝑥′[𝑁 − 𝑁𝑓 + 1], 𝑥′[𝑁 +

1], … , 𝑥′[𝑁 − 1]).  
6. Then input the next block of data which overlaps by 𝑁 − 𝑁𝑓 + 1 samples 

with the previous block 
 

It can be shown that the number of complex multiplications per block is 
𝑁 log2(𝑁) + 𝑁 and the number of samples per block is 𝑁 − 𝑁𝑓 + 1 and therefore 

the number of complex multiplications per sample is  

𝑁𝑐𝑚 =
𝑁 log2(𝑁) + 𝑁

𝑁 − 𝑁𝑓 + 1
 

 
(b) the definition of the group velocity is  

𝑣𝑔 =
𝜕𝜔

𝜕𝛽
 

But 𝛽 = 𝑛𝑘0 =
2𝜋𝑛

𝜆
and 𝜔 = 2𝜋𝑓 =

2𝜋𝑐

𝜆
 

 
Also since 𝑣𝑔 = 𝑐/𝑛𝑔 it follows that 
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(c) using the relationships given we deduce 
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If we give 𝜆 in nm then for 𝐷 to be in ps/nm/km the speed of light will need to be 
given in km/ps 
 

𝑐 = 3 × 108
𝑚

𝑠
= 3 × 108 × 10−3 × 10−12

𝑘𝑚

𝑝𝑠
= 3 × 10−7 𝑘𝑚/𝑝𝑠  

Given  

If we write 𝑛(𝜆) = 𝑎 + (
𝑏

𝜆
)

2

− (
𝜆

𝑐
)

2

 

 
Then 

𝑑𝑛

𝑑𝜆
= −

2𝑏2

𝜆3
−

2𝜆

𝑐2
 

and hence  
𝑑2𝑛

𝑑𝜆2
=

6𝑏2

𝜆4
−

2

𝑐2
 

 
Hence if 𝐷 is in ps/nm/km then  
 

𝐷 =
−1

3 × 10−7
(

6 × 572

𝜆3
−

2𝜆

(17500)2
) 

  
And hence at 𝜆 = 1550 nm 
 

𝐷 =
−1

3 × 10−7
(

6 × 572

15503
−

2 × 1550

(17500)2
) = 16.3 ps/nm/km 

 
To determine the number of taps 𝑁𝐶𝐷 we first need to calculate the pulse spreading 
Δ𝜏 which can be calculated noting that the spectral width is approximately 
60/125=0.48 nm (assuming minimum bandwidth and noting 125 GHz is equivalent to 
1 nm in the 1550 nm window). 
 
Hence from 2000 km of fibre we obtain 
 

Δ𝜏 = 16.3 × 0.48 × 2000 = 15648 ps 
 
Also we note the sample rate is 60 × 16/15 = 64 GSa/s and hence 
 

𝑁𝐶𝐷 = 15648 × 10−12 × 64 × 109 = 1001.47 
 

i.e. 𝑁𝐶𝐷 = 1002 taps 
 
(d) Using the overlap and save algorithm with an 𝑁 point FFT the number of complex 
multiplies per sample 𝑁𝑐𝑚 is  
 

𝑁𝑐𝑚 =
𝑁 log2(𝑁) + 𝑁

𝑁 − 𝑁𝐶𝐷 + 1
 

Given 𝑁𝐶𝐷 = 1002 we expect the minimum value of 𝑁 to be 2048 which gives 



 

𝑁𝑐𝑚 =
2048 × 11 + 2048

2048 − 1002 + 1
= 23.5 

 
Given there are no technological limitations regarding the FFT size let us consider 
𝑁 = 4096 which gives 
 

𝑁𝑐𝑚 =
4096 × 12 + 4096

4096 − 1002 + 1
= 17.2 

 
Increasing to 𝑁 = 8192 gives 
 

𝑁𝑐𝑚 =
8192 × 13 + 8192

8192 − 1002 + 1
= 15.9 

 
And likewise to 𝑁 = 16384 gives 

𝑁𝑐𝑚 =
16384 × 14 + 16384

16384 − 1002 + 1
= 16.0 

 
Hence the optimum value of 𝑁 is 8192. The power consumption per polarisation is  
 
𝑃 = 15.9 × 10−12 × 64 × 109 = 1.0 𝑊 and hence for two polarisations the total 
power consumption is 2.0 W. 

  



3. (a) A typical long haul optical fibre communication system employing digital 
coherent transceivers, includes optical amplifiers every 80-100 km and as such the 
amplified spontaneous emission noise from the concatenated amplifiers will 
ultimately be the dominant source of noise. Given the power levels typically used 
nonlinearities from the Raman effect can be neglected with other scattering effects 
also being negligible. As such the primary nonlinear effect is the Kerr effect, such 
that the refractive index varies weakly with the optical power. Since in a typical long-
haul system, optical chromatic dispersion compensation is not used four wave 
mixing may be neglected, with the remaining manifestations being self-phase 
modulation (SPM) and cross phase modulation (XPM) these being the dominant 
nonlinearities. For a given chromatic dispersion, the exact ratio of SPM to XPM will 
depend on the symbol rate and spacing of the number of WDM channels. 

 
(b) 

(i) 

〈𝑖(𝑡)𝑖(𝑡 + 𝜏)〉 = 𝑞2 ⟨ ∑ ∑ 𝛿(𝑡 − 𝑡𝑚)

𝑛

𝛿(𝑡 + 𝜏 − 𝑡𝑛)

𝑚

⟩ 

 
Separate the double summation into “diagonal terms” where 𝑚 = 𝑛 and the 
“off diagonal terms” where 𝑚 ≠ 𝑛 such that  
 

〈𝑖(𝑡)𝑖(𝑡 + 𝜏)〉 = 𝑞2 ⟨∑ 𝛿(𝑡 − 𝑡𝑚)

𝑚

𝛿(𝑡 + 𝜏 − 𝑡𝑚)⟩

+ 𝑞2 ⟨ ∑ ∑ 𝛿(𝑡 − 𝑡𝑚)

𝑛≠𝑚

𝛿(𝑡 + 𝜏 − 𝑡𝑛)

𝑚

⟩ 

 
in the second summation we can use the independence of 𝑡𝑚 and 𝑡𝑛 such 
that 〈𝑋𝑌〉 = 〈𝑋〉〈𝑌〉 and hence 
 

〈𝑖(𝑡)𝑖(𝑡 + 𝜏)〉 = 𝑞2 ⟨∑ 𝛿(𝑡 − 𝑡𝑚)

𝑚

𝛿(𝑡 + 𝜏 − 𝑡𝑚)⟩

+ 𝑞2 ⟨ ∑ 𝛿(𝑡 − 𝑡𝑚)

𝑚

⟩ ⟨∑ 𝛿(𝑡 + 𝜏 − 𝑡𝑚)

𝑚

⟩  

but 

〈𝑥(𝑡)〉 = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇
2

−
𝑇
2

 

 
therefore if 𝑁 photons arrive in time 𝑇 with a rate 𝜇 then 𝑁 = 𝜇𝑇 and 
 

⟨ ∑ 𝛿(𝑡 − 𝑡𝑚)

𝑚

⟩ = lim
𝑇→∞

1

𝑇
∫ ∑ 𝛿(𝑡 − 𝑡𝑚)

𝑁

𝑚=1

𝑑𝑡

𝑇
2

−
𝑇
2

= lim
𝑇→∞

1

𝑇
𝑁 = 𝜇 

 
and likewise 



 

⟨∑ 𝛿(𝑡 − 𝑡𝑚)

𝑚

𝛿(𝑡 + 𝜏 − 𝑡𝑚)⟩ = lim
𝑇→∞

1

𝑇
∫ ∑ 𝛿(𝑡 − 𝑡𝑚)𝛿(𝑡 + 𝜏 − 𝑡𝑚)

𝑁

𝑚=1

𝑑𝑡

𝑇
2

−
𝑇
2

= lim
𝑇→∞

1

𝑇
𝑁𝛿(𝜏) = 𝜇𝛿(𝜏) 

Hence 
 

〈𝑖(𝑡)𝑖(𝑡 + 𝜏)〉 = 𝑞2𝜇2 + 𝑞2𝜇𝛿(𝜏) 
 

As required 
 
(ii) Total signal noise is 
 

𝜎2 = ∫ |𝐻(𝑓)|2𝑆𝑛𝑛(𝑓)𝑑𝑓
∞

−∞

 

Where 𝑆𝑛𝑛(𝑓) is the power spectral density of the noise which is 𝑞2𝜇, being 
the Fourier transform of the noise term of 〈𝑖(𝑡)𝑖(𝑡 + 𝜏)〉. 
 
Therefore 
 

𝜎2 = 𝑞2𝜇 ∫ cos2 (
𝜋𝑓

2𝑅𝑠
) 𝑑𝑓

𝑅𝑠

−𝑅𝑠

=
𝑞2𝜇

2
∫ 1 + cos (

𝜋𝑓

𝑅𝑠
) 𝑑𝑓

𝑅𝑠

−𝑅𝑠

=
𝑞2𝜇

2
[𝑓 +

𝑅𝑠

𝜋
sin (

𝜋𝑓

𝑅𝑠
)]

𝑅

−𝑅𝑠

= 𝑞2𝜇𝑅𝑠 

Likewise the signal power associated with the deterministic part of 
〈𝑖(𝑡)𝑖(𝑡 + 𝜏)〉 is 𝑞2𝜇2 and hence the signal to noise ratio is 
 

𝑆𝑁𝑅 =
𝑞2𝜇2

𝑞2𝜇𝑅𝑠
=

𝜇

𝑅𝑠
 

 
Noting that 𝜇 represents the number of photons per second and 𝑅𝑠 is the 
number of symbols per second we deduce the 𝑆𝑁𝑅 is also equal to the 
number of photons per symbol. 

 
(c) Assuming the signal occupies minimum bandwidth the 31.5 GBd signal will 

occupy 31.5 GHz. Hence since the FEC approaches the Shannon capacity limit 
so in one polarisation we can write 

 
50 = 31.5 log2(1 + 𝑆𝑁𝑅) 

 

And hence 𝑆𝑁𝑅 = 2(50/31.5) − 1 = 2 however we also know that the 𝑆𝑁𝑅 is 
given by the number of received photons per symbol. 
 
At 𝜆 = 1550 nm the photon energy in Joules is 
  



𝐸𝑝ℎ = ℎ𝜈 =
ℎ𝑐

𝜆
=

6.626 × 10−34 × 3 × 108

1550 × 10−9
= 1.28 × 10−19 

 
Hence the received power per polarisation is 
  

𝑃𝑟𝑥 = 𝑆𝑁𝑅 × 𝐸𝑝ℎ × 𝑅𝑠 = 2 × 1.28 × 10−19 × 31.5 × 109 = 8 𝑛𝑊 

 
And hence for two polarisation the power is 16 nW which corresponds to 
−47.9 dBm 
 
Therefore if +10 dBm is transmitted and -47.9 dBm is received with a loss of 
0.2 dB/km then the maximum distance is  
 

𝐿𝑚𝑎𝑥 =
10 + 47.9

0.2
= 290 𝑘𝑚 

 
 

4B23 Assessor’s Comments 

 

Question 1: This question dealt with the Gaussian approximation to the fundamental 𝐿𝑃01 

mode. While all candidates attempted this question half of these were poor attempts after the 

candidate had completed the required two other questions. Part (a) and (b) was generally 

answered well with average marks of 75% and 72.5% respectively. Part (c) despite building 

directly on part (b) proved to be problematic for all students with only a few differentiating 

with respect to 𝑉 to determine the optimum and none noting that they needed to rearrange the 

solution from part (b) to give the peak electric field as a function of wavenumber V and the 

power transmitted. Part (d) required combining Shannon capacity with the results of part (a) 

and (b), with relatively few good attempts at this part.  

 

Question 2: This question was answered by all candidates, dealing with digital equalization 

of chromatic dispersion with good answers provided by most candidates. Part (a) required the 

candidates to outline the overlap and save method for implementing linear convolution using 

FFTs. Part (b) required straightforward differentiation, however (c) demonstrated some errors 

in calculus. Part (d) was answered well by most albeit a couple of candidates used J rather 

that W at the unit of power and others failed to optimize the FFT size to minimize power 

consumption. Several candidates omitted to multiply by two to reflect the total power 

required in the dual polarization system considered.  

 

Question 3: This question was answered by half the candidates. Part (a) was generally not 

answered well despite being fundamentally bookwork, with only one candidate answering 

this part correctly. In contrast part (b) was generally very performed well by all who 

attempted this. Part (c) was omitted in most cases with just one credible attempt (who 

realised the need to integrate the filtered noise to determine the variance). Part (d) was 

answered reasonably by just one candidate who correctly identified the need to use the 

Shannon limit to determine the SNR, but then did not link this to the received power at the 

receiver (and hence the total distance).  

 


