Q|(a)
Fou lecture notes:
5.2 Dampers
5.2.1 Monotube

The oil displaced by the piston rod is accommodated by compression of the gas below the floating piston.

The gas pressure also:

- prevents cavitation
- causes a static force

The elastomer mountings reduce transmission of high-frequency structureborne noise. mount high pressure: 30 bar)
5.2.2 Twin tube

The cavity between the concentric tubes provides space for the oil displaced by the piston rod.

Compared to a monotube:

- larger diameter and shorter
- heavier
- lower static force
- must be mounted upright
- greater bending stiffness
- cavitation is a risk
b)

$$
\begin{aligned}
& E\left[\left(z_{s}-z_{u}\right)^{2}\right]=\int_{-\infty}^{\infty}|H(j \omega)|^{2} S_{0} d \omega \\
& \text { Q spectrum of } \\
& \text { road velocity } \dot{z}_{r} \\
& H(j \omega)=\frac{z_{s}(j \omega)-z_{u}(j \omega)}{z_{r}(j \omega)}=\frac{z_{s}(j \omega)-z_{u}(j \omega)}{z_{r}(j \omega)} \cdot \frac{1}{j \omega} \\
& \begin{aligned}
\left.=\frac{-j \omega \cdot m_{s} k_{t}}{(j \omega)^{4} m_{s} m_{u}+(j \omega)^{3}\left(m_{s}+m_{u}\right) c+(j \omega)^{2}\left(m_{s}\left(k+k_{t}\right)+k m_{u}\right)}+\begin{array}{rl}
& (j \omega) c k_{t} \\
& +k k_{t}
\end{array}\right]
\end{aligned} \\
& \therefore B_{0}=0 \\
& B_{1}=-m_{s} k_{t} \\
& A_{0}=k k_{t} \\
& B_{2}=0 \\
& B_{3}=0 \\
& A_{1}=c K_{t} \\
& A_{2}=m_{s}\left(k+k_{t}\right)+k m_{u} \\
& A_{3}=m_{s} c+m_{u} C \\
& A_{4}=m_{5} m_{a} \\
& \int_{-\infty}^{\infty}|H(\omega)|^{2} d \omega=\pi\left\{A_{0} B_{3}^{R}\left(A_{0} A_{3}-A_{1} A_{2}\right)+A_{0} A_{1} A_{4}\left(2 B, B_{3}-B_{2}^{2}\right)\right. \\
& \left.-A_{0} A_{3} A_{4}\left(B_{1}^{2}-2 B_{0} B_{2}\right)+A_{4} B_{0}^{2}\left(A_{1} A_{4}-A_{2} A_{3}\right)\right\} \\
& A_{0} A_{4}\left(A_{0} A_{3}^{2}+A_{1}^{2} A_{4}-A_{1} A_{2} A_{3}\right) \\
& =\frac{-\pi\left(A_{0} A_{3} A_{4} B_{1}^{2}\right)}{A_{0} A_{4}\left(A_{0} A_{3}^{2}+A_{1}^{2} A_{4}-A_{1} A_{2} A_{3}\right)} \\
& =\frac{-\pi\left(m_{s}+m_{u}\right) \ell \cdot m_{s}^{2} k_{t}^{2}}{k k_{t}\left(m_{s}+m_{u}\right)^{2} c^{2}+c^{2} k_{t}^{2} m_{s} m_{u}-c^{x} k_{t}\left(m_{s} k+m_{s} k_{t}+m_{u} k\right)\left(m_{s}+m_{u}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\pi\left(m_{s}+m_{u}\right) m_{s}^{2} k_{t}}{k c\left(m_{s}+m_{u}\right)^{2}+m_{s} m_{u} c k_{t}-c\left(\left(m_{s}+m_{u}\right) k_{+} m_{s} k_{t}\right)\left(m_{s}+m_{u}\right)} \\
& =\frac{-\pi\left(m_{s}+m_{u}\right) m_{s}^{2} k_{t}}{k_{c}\left(m_{s}+m_{u}\right)^{2}+m_{s} m_{u} c k_{t}-c k\left(m_{s}+m_{u}\right)^{2}-c k_{t} m_{s}\left(m_{s}+m_{u}\right)} \\
& =\frac{\pi\left(m_{s}+m_{u}\right) m_{s}^{2} k_{t}}{c k_{t}-m_{s} m_{s}}=\frac{\frac{\pi\left(m_{s}+m_{u}\right)}{c}}{C E\left[\left(z_{s}-z_{u}\right)^{2}\right]=\frac{S_{0} \pi\left(m_{s}+m_{u}\right)}{c}}
\end{aligned}
$$

Q2. a) $z_{L, R}=z_{V} \pm z_{\phi}$
Z_{v} and Z_{ϕ} are uncarrelated
hence $S_{z_{L, R}}(n)=S z_{V}(n)+S_{z_{\phi}}(n)$

$$
\begin{aligned}
& =S_{Z_{v}}(n)+|G(n)|^{2} S_{Z_{v}}(n) \\
& =S_{z_{v}}(n)+\left(1+\frac{n^{2}}{n_{c}^{2}+n^{2}}\right) \\
& \therefore \frac{S_{z_{v}}(n)}{S_{z_{n}}(n)}=\frac{n_{c}^{2}+n^{2}}{n_{c}^{2}+2 n^{2}} \quad \begin{array}{l}
n \rightarrow 0: \text { rakiol } \\
n \rightarrow \infty: \text { raho } \rightarrow \frac{1}{2}
\end{array} \\
& \frac{S_{z \phi}(n)}{S_{z_{L, R}(n)}}=\frac{S_{z_{v}}(n)}{S_{z_{L, R}(n)}} \cdot \frac{S_{z_{\phi}(n)}}{S_{z_{v}(n)}}=\frac{n_{c}^{2}+n^{2}}{n_{c}^{2}+2 n^{2}} \cdot \frac{n^{2}}{n_{c}^{2}+n^{2}} \\
& \begin{array}{lll}
=\frac{n^{2}}{n_{c}^{2}+2 n^{2}} & n \rightarrow 0: \quad \text { ahis } \rightarrow 0 \\
& n \rightarrow \infty: \quad \text { raks } \rightarrow \frac{1}{2} .
\end{array}
\end{aligned}
$$

b) verhical mordes:

- sprung man (arsume unspring man does not nive)

$$
\begin{aligned}
\omega_{\text {sonng }} & =\sqrt{\frac{60.10^{3}}{800}} \\
& =8.66 \mathrm{rad} / \mathrm{s} \\
& =1.38 \mathrm{~Hz}
\end{aligned}
$$

- unsprung man (assume spring man does not move)

$$
\begin{aligned}
\omega_{\text {mavsonng }} & =\sqrt{\frac{460 \cdot 10^{3}}{90}} \\
& =71.5 \mathrm{rad} / 5 \\
& =11.38 \mathrm{~Hz}
\end{aligned}
$$

Lateral roll modes:

- unsoning mans roll mode (assume spring mass

$|\leadsto 1.5 \mathrm{~m}| \quad$ roll shfferes $=2.230 .10^{3} \cdot 0.75^{2}$ Nm/rad.

$$
\begin{aligned}
W_{\text {unsorey }}^{\text {real }} & =\sqrt{\frac{2 \cdot 230 \cdot 10^{3} \cdot 0.75^{2}}{5 /}} \\
& =71.23 \mathrm{rad} / \mathrm{s}=11.3 \mathrm{~Hz}
\end{aligned}
$$

- spring mars laveral/rdl nude (assume unsponigg, mans

$$
\begin{aligned}
\begin{array}{r}
\omega_{\text {spring }}^{\text {volleat }}
\end{array} & =\sqrt{\frac{2.30 \cdot 10^{3} \cdot 0.75^{2}}{460+\underbrace{800 \cdot 0.45^{2}}_{\text {parallel axes }}}} \\
& =7.37 \mathrm{rad} / \mathrm{s} \\
& =1.17 \mathrm{~Hz}
\end{aligned}
$$

(other assumptrais could be made)
C) Relathirship between frequency, speed U, waverumber n and wavelength λ :

$$
\begin{aligned}
& u=f \cdot \lambda \text { where } d=\frac{1}{n} \\
& \therefore u=\frac{f}{n}-\text { cycles } / \mathrm{s} \\
& \mathrm{~m} / \mathrm{s}^{\prime}
\end{aligned}
$$

At hugh speed $(U=30 \mathrm{~m} / \mathrm{s}), n_{c}(0.2$ cycle /m) corresponds to 6 Hz , therefore sprung mass nodes ($<2 \mathrm{~Hz}_{2}$) are only exited in bounce, not wi roll. Therefore there is ally a small contribution of sprung meas roll to notoral seat acne.

As speed decreases (say $1 \mathrm{~m} / \mathrm{s}$), n_{c} (0.2 cycle/m) corresponds to 0.2 Hz . Thus the spring. and unsorning modes are excited wi bounce and roll, and the contribution of the sprung mans roll to varteral seat acceleration urreases as speed decreases.
3. (a) (i)

Small slip apples (small δ) - linear creep Neglect tyre realigning moments, long'l \& foin creep
(ii)

$$
\left.\begin{array}{l}
m(\dot{v}+u \Omega)+\left(C_{f}+C_{f}\right) \frac{v}{u}+\left(a C_{f}-b C_{r}\right) \frac{\Omega}{u}-C_{f} \delta=y \\
I \dot{\Omega}+\left(a C_{f}-b C_{f}\right) \frac{v}{u}+\left(a^{2} C_{f}+b^{2} C_{r}\right) \frac{\Omega}{u}-a C_{f} \delta=N
\end{array}\right\}(2 \cdot \cdot \overline{7}
$$

Now introduce the following abbreviations:

$$
\begin{aligned}
& C=C_{f}+C_{r}=\text { total covering stifthess } \\
& S=\frac{a C_{f}-b C_{r}}{C_{f}+C_{r}}: \frac{-5}{l}=\text { 'statue margin' (see Cater) } \\
& q^{2}=\frac{a^{2} C_{f}+b^{2} C_{r}}{C_{f}+C_{r}} \quad q=\text { 'yow tithes rachis's } \\
& l=a+b \quad=\text { length of vehicle } \\
& I=m k^{2} \quad k=\text { trading of gyration }
\end{aligned}
$$

$$
-4-
$$

Combining (2.7) and (2.8) gives

$$
m\left[\begin{array}{ll}
1 & 0 \tag{2.9}\\
0 & k^{2}
\end{array}\right]\left\{\begin{array}{l}
\dot{v} \\
\dot{\Omega}
\end{array}\right\}+\left[\begin{array}{cc}
c / u & c s / u+m u \\
c_{s / u} & c q^{2} / u
\end{array}\right]\left\{\begin{array}{l}
v \\
\Omega
\end{array}\right\}=\left\{\begin{array}{l}
Y+c_{f} \delta \\
N+a C_{f} \delta
\end{array}\right\}
$$

Assume $Y=N=\delta=0$ and assume characteristic solutions of the form $v=v_{0} e^{\lambda t}, \Omega=\Omega_{0} e^{\lambda t}$, then (2.9) gives:

$$
\left[\begin{array}{lr}
(m \lambda+c / u) & c s / u+m u \\
c s / u & m h^{2} \lambda+c q^{2} / u
\end{array}\right]\left\{\begin{array}{l}
v_{0} \\
\Omega_{0}
\end{array}\right\}=0
$$

The roots of the characteristic equation are obtained by setting the determinant of the matrix to zero:

$$
(m \lambda+c / u)\left(m k^{2} \lambda+c q^{2} / u\right)-\operatorname{cs} / u(\operatorname{cs} / u+m u)=0 \quad(2 \cdot 11)
$$

ie

$$
\begin{gather*}
\left(m^{2} k^{2} u^{2}\right) \lambda^{2}+\operatorname{muC}\left(\dot{q}^{2}+k^{2}\right) \lambda+c\left[c\left(q^{2}-s^{2}\right)-m u^{2} s\right] \tag{2.12}\\
a_{2}
\end{gather*} a_{1}=0
$$

for stable motion the coefficients of $\lambda^{2}, \lambda^{\prime}, \lambda^{0}$ must all be positive (Routh-Hururts criterion)
Clearly, the coefficient of $\lambda^{2} \& \lambda^{\prime}$ are always positive, but $a_{0}=\left[c\left(q^{2}-s^{2}\right)-m u^{2} s\right]$ may be positive or regative, depending on the values of the various terns.
Substituting from (2.8), the stability condition is:

$$
a_{0}=\left(C_{f}+C_{r}\right)\left[\frac{a^{2} C_{f}+b^{2} C_{r}}{\left(C_{f}+C_{r}\right)}-\frac{\left(a C_{f}-b C^{2}\right)^{2}}{\left(C_{f}+C_{r}\right)^{2}}\right]-m u^{2} \frac{\left(a C_{f}-b G\right)}{C_{f}+G}>0
$$

This reduces to:

$$
l^{2} C_{f} C_{r}+m u^{2}\left(b c_{r}-a C_{f}\right)>0
$$

Thus the vehicle is always stable if

$$
\begin{equation*}
b C_{r} \geqslant a C_{f} \tag{2.14}
\end{equation*}
$$

However if (2.14) is rot satisfied, then

$$
u^{2}<\frac{C_{f} C_{r} l^{2}}{M\left(a C_{f}-b C_{r}\right)} \quad \text { if } a C_{f}>b c_{r} \quad(2.15)
$$

The simple vehicle model is always stable if $b C_{r} \geqslant a C_{f}$. If similar tyres are used on all wheels, then the CG position should be forward of the mid point of the wheel bose.
If this condition is rot satisfied, the car will become unstable when the speed exceeds a critical value:

$$
\begin{equation*}
U_{c}=\sqrt{\frac{C_{f} C_{r} l^{2}}{m\left(a C_{f}-b C_{r}\right)}} \text { for } a C_{f}>b C_{r} \tag{2,16}
\end{equation*}
$$

(b) (1)

Assume two trailer wheels are located on the centreline of the trailer (as per 'bicycle' model')

Sip angle $=\frac{\text { Velonty Normal to wheel pare }}{\text { Velocity parallel to whee plue }}=\frac{V_{x}}{V_{y}}$
ie $\alpha=\frac{u \sin \theta+(a+b) \theta}{u \cos \theta} \approx \frac{u \theta+(a+b) \dot{\theta}}{(\sin \alpha \theta)}$
Lateral tyre fore: $Y=-C \propto$ (negative sigi undulates fore in apposite director to V_{x}
$u>0$ for forwards motion $Y=-C\left[\theta+\frac{(a+b) \dot{a}}{u}\right]$. $u<0$ for Revere notus $y=-C\left[\frac{-u^{o}+(a+b) \dot{\theta}}{u}\right]$
ar Conbried $\quad y=-C\left[\frac{u \theta+(a+b) \dot{\theta}}{|u|}\right]$
(II)

ie $\left(I+m a^{2}\right) \ddot{\theta}+(a+b) c\left\{\operatorname{sgn}(u) \theta+\frac{(a+b) \dot{\theta}}{|u|}\right\}=0$

$$
\Rightarrow\left(I+M a^{2}\right) \dot{\theta}+\frac{(a+b)^{2} c}{|u|} \dot{\theta}+(a+b) C \operatorname{Sgn}(u) \theta=0
$$

a_{1}
a_{2}
a_{3}
(ni) Stululty $a_{1} \& a_{2}>0$
$a_{3}>0$ for forward action $(u>0)$
$a_{3}<0$ for revere notion $(u<0)$

4 (a) creep velocihes:

creep forces:

sum of creep forces along axis Δ

$$
y=2 c\left(\theta+\frac{\dot{y}}{u}\right)
$$

Sum of moments. D

$$
\begin{aligned}
N & =-C\left(1+\frac{d \dot{\theta}}{u}-\frac{r_{2}}{r}\right) d+C\left(1-\frac{d \dot{\theta}}{u}-\frac{r_{1}}{r}\right) d \\
& =\frac{C d}{r}\left(r_{2}-r_{1}-\frac{2 d \dot{\theta} r}{u}\right)
\end{aligned}
$$

where $r_{2}-r_{1}=2 \varepsilon \varepsilon_{y}$

$$
\begin{gathered}
r_{1}=r-y \tan \varepsilon \\
r_{2}=r+y \tan \varepsilon \\
\therefore \quad N=\frac{c d}{r}\left(2 \varepsilon y-\frac{2 d \dot{\theta} r}{u}\right) \\
N=2 C d\left(\frac{\left.\varepsilon y-\frac{\dot{\theta} d}{u}\right)}{r}\right)
\end{gathered}
$$

(b)
 weight dueto Canler)

$$
\begin{align*}
& \text { Laterl tracking erors } \\
& \left.\begin{array}{l}
y_{1}=y+a \theta \\
y_{2}=y-a \theta
\end{array}\right\} \tag{1}\\
& A \sum_{y}: \quad 4 C \theta-\frac{\mu g}{2} \sin \phi=0 \Rightarrow \theta=\frac{\mu g \sin \phi}{8 C} \\
& (\sum M_{p}: \quad 2 a(2 c \theta)-\frac{2 d c \sum}{r}(\underbrace{y_{1}+y_{2}}_{\mathbb{I}})-a \frac{\mu g}{2} \delta i \phi=0 \tag{3}\\
& \text { 2y } \operatorname{dran}(1)
\end{align*}
$$

Subolutute θ frim (2) wito (3):

$$
\begin{gathered}
4 a \times\left(\frac{M g}{\delta d} \delta \infty\right)-\frac{4 d c \varepsilon y}{r}-\frac{a \mu y}{2} \operatorname{si\phi } \phi=0 \\
\\
\Rightarrow y=0
\end{gathered}
$$

So the lagie poves with zero lateal trocking errar and a snall postwe "argle of attack"

$$
\theta=\frac{\mu g}{\delta c} \sin \phi
$$

This implès a reed for an adolitonal lateral track dearace of $2 a \theta=\frac{a M g}{4 c} \operatorname{sun} \phi$

PRINCIPAL ASSESSOR'S COMMENTS

Q1 Mean square response of quarter-car model

Part (a) was generally answered well, but some of the sketched diagrams were of very poor quality. A common mistake was to omit the damper valve at the base of the twin-tube damper. Most candidates could state the important differences between the two designs of damper. Part (b) was also answered well. The most common mistake was not to convert the transfer function to a velocity input.

Q2 Vehicle vibration in the roll plane

This was the least popular and lowest scoring question. Some of the answers to (a) described the graph instead of explaining it. A variety of answers to (b) were given; not everyone was successful in showing that the sprung mass modes are around 1.3 Hz and the unsprung mass modes are around 11 Hz . Few candidates could explain fully the response shown in Fig. 2(d) in terms of the answers to (a) and (b).

Q3 Lateral/yaw dynamics of car

The derivation of the critical speed and conditions for stability was done well by most candidates. The analysis of the trailer in (b) was also generally performed well, most problems arising due to lack of a large, clear diagram and unclear sign conventions for velocities and forces. Attempts to set up and differentiate a vector expression were generally more successful in part (a) than part (b), probably due to more familiarity with the standard case in (a).

Q4 Railway wheelset and bogie

This was the most popular and highest-scoring question and attempted by all but two candidates. The derivation of the equations given in (a) was generally very well done. However diagrams were sometimes too small, incomplete and untidy. Sign conventions were often not clearly stated. Some derivations were incomplete, appearing to have been worked backwards from the given equations. Solutions to part (b) were also very good, but again poor diagrams were often the source of problems.

David Cole
djc13@cam.ac.uk
19 May 2017

