PART IB MODML $4 C 8$ VEHICLE DMAAMICS - CRIBS 2018

1. (a) See lecture rotes for assumptions.
(b)

$$
\left.\begin{array}{l}
m(\dot{v}+u \Omega)+\left(C_{f}+C\right) v / u+\left(a C_{f}-b C_{f}\right) \Omega / u=y+C_{f} \delta \tag{1}\\
I \dot{\Omega}+\left(a C_{f}-b C_{C}\right) v / u+\left(a^{2} C_{f}+b^{2} G\right) v / u=N+a C_{f} \delta
\end{array}\right\}
$$

Ciunlar motion $Y=N=0, \Omega=u / k, \dot{v}=\dot{\Omega}=0 \quad \& \quad \beta=v / u$
Ant $C=C_{f}+G ; \quad s=\frac{a C_{f}-b C_{r}}{C_{f}+G} ; q^{2}=\frac{a^{2} C_{+}+b^{2} C_{2}}{C_{f}+G} ; l=a+b-C^{2}$
(1) \& (2) gue $\left[\begin{array}{cc}c & c s+m u^{2} \\ c s & c q^{2}\end{array}\right]\left\{\begin{array}{l}\beta \\ \frac{\Omega}{u}\end{array}\right\}=\left\{\begin{array}{l}c_{f} \delta \\ a c_{f} \delta\end{array}\right\}$

Hence $\left\{\begin{array}{c}\beta \\ \Omega / u\end{array}\right\}=\frac{\left[\begin{array}{c}c q^{2}-\left(c s+m u^{2}\right) \\ -c s c\end{array}\right]\left\{\begin{array}{l}c_{f} \delta \\ a f_{f} \delta\end{array}\right\}}{c^{2} q^{2}-c s\left(c s+m u^{2}\right)}$
from wheh

$$
\left\{\begin{array}{l}
\beta \tag{5}\\
\Omega / u
\end{array}\right\}=\frac{\left\{\begin{array}{c}
\left(l b C_{r}-a m u^{2}\right) C_{f} \\
l C_{f} C_{r}
\end{array}\right\}}{C_{f} C^{2} l^{2}-C_{m} u^{2}}
$$

(c) Sideship ayples: $\alpha_{t}=\frac{v+a \Omega}{u}-\delta, \alpha_{1}=\frac{v-b \Omega}{u}$

$$
\alpha_{f}=\beta+a \frac{\Omega}{n}-\delta \quad \alpha_{r}=\beta-\frac{b \Omega}{u}-6
$$

(5) \& (6) gwe

$$
\begin{aligned}
& \frac{\alpha_{f}}{\delta}=\frac{\left(l b G-a m u^{2}\right) C_{f}+a l C_{f} G-1}{C_{f} C_{f} l^{2}-C_{m} u^{2}}=\frac{-b C_{r} m u^{2}}{C_{f} C_{r} l^{2}-c_{m} n^{2}} \\
& \frac{x_{r}}{\delta}=\frac{\left(t b C_{r}-a m u^{2}\right) C_{f}-b d C_{f} G_{r}}{C_{f} l_{r}^{2}-C_{m m u}}=\frac{-a C_{f} m u^{2}}{C_{f} C l^{2}-C \operatorname{Sin} u^{2}}
\end{aligned}
$$

(dd) For $u=0, \quad \alpha_{f}=0 \quad \& \quad \alpha_{r}=0 \quad \beta=\frac{X b C_{f} C_{F} \delta}{l^{2} C_{f} G}=\frac{b}{l} \delta$
from(6) $\alpha_{f}-\alpha_{r}=\frac{(a+b) \Omega}{u}-\delta=\frac{l}{R_{k}}-\delta$
for $n=0 \quad \alpha_{r}=\alpha_{r}=0 \quad \& \quad \delta=l / R \quad u=R \Omega$
for $u \neq 0, \quad \delta=l / R+\alpha_{r}-\alpha_{t}$
(e)

$$
\begin{aligned}
& R=\frac{u}{\Omega}=\frac{C_{f} C_{r} l^{2}-c \operatorname{csn} u^{2}}{l^{2} C_{f} G \delta}=\frac{l}{\delta}\left(-\frac{c \operatorname{csm}}{l C_{f} G} u^{2}\right) \\
& \frac{\partial R}{\partial u}=\frac{b}{\delta}\left(\frac{-2 c \operatorname{csu} u}{X C_{f} C}\right)=-\frac{2 \operatorname{csm}}{c_{f} G l} \cdot u
\end{aligned}
$$

for $\delta=0$ (nentinl stec) $\partial R / \partial u=0$ ì volurs is const with $R=L / \delta$
For $\delta<0$ (undertev) $\quad \partial r / \partial u>0$ ie athis wireoses
for $5>0$ (ovesteer) $\quad \partial R / \partial u<0$ ì radus decreases with speed.
 untel the rormal enticd speed when $R=0$ and the vehuce spins

2 a - See lecture rotes
26
(1)

Lateral velouty of whed $\dot{y}: a \dot{\theta}+\dot{y}$
Lateral creep of wheet is $(a \dot{\theta}+\dot{j}) / u+\theta$ Loteral tye force is $c[(a \dot{\theta}+\dot{y}) / u+\theta]$

$$
\left.\begin{array}{l}
p a \hat{\theta}+\ddot{y} \tag{1}\\
k y\left(\prod_{m(a \dot{\theta}}^{m}+\dot{y}\right) \\
C\left(\frac{a \dot{\theta}+\dot{y}}{u}+\theta\right)
\end{array}\right\} \frac{\sum E}{c\left(\frac{a \dot{\theta}+\dot{y}}{n}+\theta\right)+k y+m(a \ddot{\theta}+\dot{y})=0}
$$

In matrin foim:

$$
\left[\begin{array}{cc}
M & m a \\
0 & I
\end{array}\right]\left\{\begin{array}{l}
\ddot{y} \\
\ddot{\theta}
\end{array}\right\}+\left[\begin{array}{cc}
c / u & c a / u \\
0 & 0
\end{array}\right]\left\{\begin{array}{l}
\dot{y} \\
\dot{\theta}
\end{array}\right\}+\left[\begin{array}{cc}
k & c \\
-a k & 0
\end{array}\right]\left\{\begin{array}{l}
y \\
\theta
\end{array}\right\}=0
$$

charuiterste equation:

$$
\begin{array}{cc}
\left|\begin{array}{cc}
m s^{2}+c s / u+k & m a s^{2}+\frac{c a s}{u}+c \\
-a k & I s^{2}
\end{array}\right|=0 \\
\left(m s^{2}+\frac{c s+k)\left(I s^{2}\right)-(-a k)\left(m \cdot a s^{2}+\frac{c a s}{u}+c\right)=0}{}=\left(\begin{array}{c}
\\
4
\end{array}\right)=0\right.
\end{array}
$$

$2 \cos t$

$$
\begin{array}{ccc}
S^{4}(m I)+s^{3}\left(\frac{c I}{w}\right)+s^{2}\left(k I+m a^{2} k\right)+s\left(\frac{c a^{2} k}{u}\right)+c a k=0 \\
a_{4} & a_{3} & a_{2}
\end{array} a_{1} \quad a_{0}
$$

Routh Howrits: Stable if (i) All $a^{\prime s}>0$

$$
\text { (11) } a_{1} a_{2} a_{3}>a_{1}^{2} a_{4}+a_{3}^{2} a_{0}
$$

(1) is trivill $\longrightarrow u>0$
(II):

$$
\begin{aligned}
& \frac{\phi a^{2} k}{x} \cdot\left(k I+m a^{2} k\right) \cdot \frac{\not \neq}{x}>\left(\frac{d a^{2} k}{b}\right)^{2} m \neq+\left(\frac{d I}{x}\right)^{t} c a k \\
& \Rightarrow a^{2} k^{2} I+a^{4} / k^{2}>a^{4} m k^{k}+\text { ICA }
\end{aligned}
$$

$\Rightarrow k>\frac{c}{a}$ is stability condition

3 a) Whan $k=0$

$$
\begin{aligned}
& R=\sqrt{\frac{\pi S_{0} k_{t} c}{m_{s}^{2}}}, W=\sqrt{\frac{\pi S_{0}\left(m_{s}+m_{u}\right)}{C}} \\
& R=\frac{\sqrt{C}}{W}=\frac{\sqrt{\pi S_{0}\left(m_{s}+m_{u}\right)}}{W} \\
& R=\frac{1}{\frac{\pi S_{0} k_{t}}{m_{s}^{2}} \sqrt{\pi S_{0}\left(m_{s}+m_{u}\right)}} \\
& R \frac{\pi S_{0}}{m_{s}} \sqrt{k_{t}\left(m_{s}+m_{u}\right.}
\end{aligned}
$$

b) Fund expressui for c that nimimises R Consvder R^{2} to somplify calculus

$$
\begin{aligned}
R^{2} & =\frac{\pi S_{0}\left[\left(m_{s}+m_{u}\right) k^{2}+k_{t} c^{2}\right]}{m_{s}^{2} c} \\
\frac{d\left(R^{2}\right)}{d c} & =\pi S_{0}\left(\frac{m_{s}^{2} c 2 k_{t} c-\left(\left(m_{s}+m_{u}\right) k^{2}+k_{t} c^{2}\right) m_{s}^{2}}{m_{s}^{4} c^{2}}\right)
\end{aligned}
$$

mininuum when $\frac{d\left(R^{2}\right)}{d c}=0$

$$
\begin{aligned}
2 m_{s}^{2} k_{t}^{2} & =\left(\left(m_{s}+m_{u}\right) k^{2}+k_{t} c^{2}\right) m_{s}^{x} \\
c^{2} k_{t} & =\left(m_{s}+m_{u}\right) k^{2} \\
c^{2} & =\frac{\left(m_{s}+m_{u}\right) k^{2}}{k_{t}}
\end{aligned}
$$

$3(\cos t)$
Fid $W_{\text {min }}$ and $R_{\text {min }}$ for this value of c

$$
\begin{aligned}
w_{m u i}^{2} & =\frac{\pi S_{0}\left(m_{s}+m_{u}\right) \sqrt{k_{t}}}{\sqrt{m_{s}+m_{u}} k} \\
& =\frac{\pi S_{0} \sqrt{k_{t}\left(m_{s}+m_{u}\right)}}{k} \\
R_{\text {min }}^{2} & =\frac{\pi S_{0}\left(\left(m_{s}+m_{u}\right) k^{2}+k_{t} \frac{\left(m_{s}+m_{u}\right) h^{2}}{k_{t}}\right) \sqrt{k_{t}}}{m_{s}^{2} \sqrt{m_{s}+m_{u}} k}
\end{aligned}
$$

$$
\begin{aligned}
R_{\min }^{2} & =\frac{\pi s_{0} 2\left(m_{s}+m_{u}\right) k^{2} \sqrt{k_{t}}}{m_{s}^{2} \sqrt{m_{s}+m_{u}} k} \\
& =\frac{2 \pi s_{0} k \sqrt{k_{t}\left(m_{s}+m_{u}\right)}}{m_{s}^{2}}
\end{aligned}
$$

eliminate k :

$$
\frac{1}{k}=\frac{2 \pi S_{0} \sqrt{k_{t}\left(m_{s}+m_{u}\right)}}{m_{s}^{2} R_{m i n}^{2}}
$$

substitute for k into expression for Wii:

$$
W_{m \text { min }}^{2}=\frac{\pi S_{0} \sqrt{k_{t}\left(m_{s}+m_{u}\right)} 2 \pi S_{0} \sqrt{k_{t}\left(m_{s}+m_{u}\right)}}{m_{s}^{2} R_{\text {min }}^{2}}
$$

3 cont. Surap W and R :

$$
R_{\text {rain }}=\frac{\sqrt{2}}{W_{\text {min }}} \frac{\pi S_{0}}{m_{s}} \sqrt{k_{t}\left(m_{s}+m_{u}\right)}
$$

Note that thus is $\sqrt{2}$ times the expression un (a).
c) The expression in (a) defies the trade- of between R and W. It is a Pareto front, which defies, for a gwen W, the ninunum possible R (and vie versa).

In practice the state deflector arising from zero K is problematic and so a ponit such as D would be move appropriate for a passenger ear.

The expresscai m. (b) shows that, for gwen k and W, the minimum increase in R from the zero- k condition is a factor of $\sqrt{2}$.

Minimising depnanui tyre force F is important for the roadkolding of ports and racing ears, where pound B ought be a better design point.

Hogher values of k would be required for racing cars subjected to la ge variations of dounforce. Pout A nuopht be aporgorate. Here, the graph indicates that F and R are nunumised somultanerusly for given W.
(aa) Consider a massless, suspensombes velucle with wheelbase L. The velure ravels along a soussoodal profile, wavelength λ. The wheelkore filter out pitch oxecitakion when $L=N \lambda$ (N is an integer), and filtes out bounce excitatei when $L=\left(N+\frac{1}{2}\right) \lambda$.

$$
\text { F bounce }=\frac{U}{\lambda} \text { hence } f_{\text {bounce }}=\frac{U\left(N+\frac{1}{2}\right)}{L}
$$

b) i) The massless pivoted beam can be treated as a beam pinned to the front and rear axles with a spring $2 s$ at its outre. The equahoin of undamped mother of the sprung mass are then:

$$
\begin{aligned}
& m \ddot{z}=k\left(z_{r_{2}}-(z+a \theta)\right)+k\left(z_{r_{1}}-(z-a \theta)\right) \\
&+2 s\left(-z+\frac{\left(z_{r_{1}}+z_{r_{2}}\right)}{2}\right) \\
& J \ddot{\theta}=k\left(z_{r_{2}}-(z+a \theta)\right) a-k\left(z_{r_{1}}-(z-a \theta)\right) a
\end{aligned}
$$

Free utahan:

$$
\begin{gathered}
{\left[\begin{array}{cc}
m & 0 \\
0 & J
\end{array}\right]\left\{\begin{array}{l}
\ddot{z} \\
\ddot{\theta}
\end{array}\right]+\left[\begin{array}{cc}
2 k+2 s & 0 \\
0 & 2 k a^{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
\theta
\end{array}\right]=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}} \\
M \ddot{x}(t)+K x(t)=0
\end{gathered}
$$

4 cont.
transform:

$$
\begin{aligned}
-\omega^{2} M \bar{x}(j \omega)+K \bar{x}(j \omega) & =0 \\
\left(M^{-1} K-\omega^{2}\right) \bar{x}(j \omega) & =0
\end{aligned}
$$

non-trivil solution when

$$
\begin{aligned}
& \operatorname{det}\left(M^{-1} K-\omega^{2}\right)=0 \\
& \operatorname{det}\left[\begin{array}{cc}
\frac{2(k+s)}{m}-\omega^{2} & 0 \\
0 \quad \frac{2 k a^{2}}{J}-\omega^{2}
\end{array}\right]=0 \\
& \left(\frac{2(k+s)}{m}-\omega^{2}\right)\left(\frac{2 k a^{2}}{J}-\omega^{2}\right)=0 \\
& \omega^{2}=\frac{2(k+s)}{m}, \omega^{2}=\frac{2 k a^{2}}{J}
\end{aligned}
$$

by unsechai the mode slegpes are pure bounce.' bounce: $W_{\text {bounce }}=\sqrt{\frac{2(k+s)}{m}},\left\{\begin{array}{l}z \\ \theta\end{array}\right]=\left\{\begin{array}{l}1 \\ 0\end{array}\right]$. and sure pitch: pitch: Wretch $=\sqrt{\frac{2 k a^{2}}{J}}, \quad\left\{\begin{array}{l}z \\ \theta\end{array}\right\}=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$.

4bil) $J=m a^{2}$ so $f \rho i c h=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$ and $\quad f_{\text {bounce }}=\frac{1}{2 \pi} \sqrt{\frac{2(k+s)}{m}}$
hence foch \leqslant france.
From (a), zoo excutainer at flounce when Flounce $=\frac{u\left(N+\frac{1}{2}\right)}{L}$ where $L=2 a$.
Also, zoo excitation at faith when

$$
f_{\text {pith }}=\frac{U N}{L}
$$

One possible arrangement that satisfies conduhai (1) is to set $N=0$ for the pitch and bounce modes: When $f_{p u t h}=0$ and $k=0$
then $f_{\text {bourne }}=\frac{u\left(\frac{1}{2}\right)}{2 a}=\frac{1}{2 \pi} \sqrt{\frac{2 s}{m}}$

$$
\therefore s=\frac{\pi^{2} u^{2} m}{8 a^{2}}
$$

In practice, zero k would result i large pitch angles during braking and acceleration, but a sufficiently low value could be achieved with the aud of a control system to prevent large angles.

ENGINEERING TRIPOS PART IIB 2018 ASSESSOR'S COMMENTS, MODULE 4C8: APPLICATIONS OF DYNAMICS

Question 1

Car Steering. Attempted by almost all candidates. Parts (a) and (b) were bookwork and generally fine. Part (c) (slip angles) was generally OK, but almost nobody realised that the slip angles are zero when the speed approaches zero. In part (d), there was considerable confusion between the turn centre and the Neutral Steer point, which are completely different things!

Question 2

Lateral and Longitudinal Forces; Wheel Shimmy: Another popular question. Part (a) was generally fine. In part (b), the candidates were required to do some simple second year mechanics - draw a free body diagram and write a couple of equations of motion for a planar system. This was particularly a problem for taking moments about the towing point. Their abilities to do this simple task were very poor indeed, with confusion about the forces that are inside and outside the free body boundaries.

Question 3

In part (a) many candidates did not account for the square brackets and thus neglected to multiply the k_t.c ${ }^{2}$ term by pi.S_0. Solutions to part (a) often incorrectly included c or assumed that R was proportional to W . An expression for c found in part (a), valid only for $\mathrm{k}=0$, was often erroneously carried forward into part (b). Many unsuccessful answers to part (b) consisted of lengthy algebra without any explanatory comments.

Question 4

Most descriptions of wheelbase filtering in part (a) demonstrated a good understanding of the mechanism. In part (b)(i) many candidates were able to derive correctly the natural frequencies and mode shapes by inspection. A significant minority of answers didn't deal correctly with the pivoted beam and its springs. Only a few solutions derived the equations of motion and performed an eigenvalue analysis. In part (b)(ii) the expressions for natural frequencies found in part (b)(i) were often sensibly equated to the expressions found in part (a), but guidance on choosing suitable values for wavenumber ' N ' was invariably not included in the answer.

D Cebon, 20/5/2018

