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EGT3
ENGINEERING TRIPOS PART IIB

Friday 4 May 2018 2.00 to 3.40

Module 4F1

CONTROL SYSTEM DESIGN - SOLUTIONS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4F1 Formulae sheet (3 pages)
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Block diagram of two degree of freedom controller
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Fig. 1

Transfer function Tr→y should satisfy

•Any RHP zero of G must remain in Tr→y .

•Tr→y must roll off at high frequencies at least as fast as G.

(b) (i) To find the closed loop poles we need to solve 1+ kG1(s)G2(s) = 0 . So we
have

k(s2 +ω
2
1 )+(s2 +ω

2
2 )(τs+1) = 0

or
τs3 +(1+ k)s2 +ω

2
2 τs+ω

2
2 + kω

2
1 = 0

From the Routh-Hurwitz criterion in the data book, we have

(1+ k)ω2
2 τ > τ(ω2

2 + kω
2
1 ) (1)

ω
2
2 + kω

2
1 > 0 (2)

From (1) we have k(ω2
2 −ω2

1 )> 0 which implies k < 0. From (2) we have

−
(

ω2
ω1

)2
< k. (3)

Hence we get

−
(

ω2
ω1

)2
< k < 0. (4)
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(ii) Root locus diagrams

Root Locus (k>0)
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Fig. 2

(iii)

S =
1

1+G(s)K(s)
S( jω2) = 0, S( jω1) = 1

T =
G(s)K(s)

1+G(s)K(s)
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T ( jω2) = 1, T ( jω1) = 0

(iv) In this range the sensitivity is close to zero, so there is reduced sensitivity to
output disturbances and modeling uncertainty. Around ω2 T is close to 1, so sensor
noise not attenuated.

(v)

Tr→y = H(s)
G(s)K(s)

1+G(s)K(s)
=

s2 +1
(s+1)3

So

H(s) =
1+G(s)K(s)

G(s)K(s)
s2 +1
(s+1)3 =

[(s2 +ω2
2 )(s+1)+ k(s2 +1)]

k(s2 +1)
(s2 +1)
(s+1)3

=
(s2 +ω2

2 )(s+1)+ k(s2 +1)
k(s+1)3

Also k needs to satisfy the condition in (b)(i).

Comments: The question was attempted by most students and was generally well
answered. Mistakes were often made in the root-locus diagrams.
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2 (a) Small sensitivity reduces the effect of disturbances on the plant output and the
effect of plant uncertainty on the command transfer function.

Small complementary sensitivity provides improved robustness to multiplicative
uncertainty (deduced via the small gain theorem).

(b) (i) Let L(s) = G(s)K(s). S(s) is analytic and has no zeros in the RHP so logS(s)
is analytic in Re(s) > 0. Let σ = σ0 and ω0 = 0 in the Poisson formula (provided
in the data sheet). Then:

σ ln |S(σ)|= 2
π

∫
∞

0

σ2

σ2 +ω2 ln |S( jω)|dω

As σ → ∞ the RHS converges to:

2
π

∫
∞

0
ln |S( jω)|dω

This follows because σ2

σ2+ω2 is close to one except for large ω , and ln |S( jω)| → 0
as ω → ∞ because |S( jω)| → 1 as ω → ∞.
By assumption

L(σ)∼ c
σk

for large σ where k ≥ 2, and c is a real constant. Thus

σ ln |S(σ)| ∼ −σ ln(1+ cσ
−k) (5)

=−σ(cσ
−k + . . .) (6)

=−cσ
−k+1 + . . . (7)

Thus
σ ln |S(σ)|= 0

as σ → ∞. We therefore obtain:∫
∞

0
ln |S( jω)|dω = 0

(ii)
|1+G( jω)K( jω)| ≥ 1−|G( jω)K( jω)|

Hence
|S( jω)| ≤ 1

1−|G( jω)K( jω)|
provided |G( jω)K( jω)| ≤ 1. Therefore

ln |S( jω)| ≤ − ln(1−ω
−2)
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We now have∫
∞

10
ln(1−ω

−2)dω =

[
ω ln(1−ω

−2)+ ln
(

ω +1
ω−1

)]∞

10
=−0.100

So ∫
∞

10
ln |S( jω)|dω ≤ 0.100

(iii)

0 =
∫

∞

0
ln |S( jω)|dω

≤
∫ 1

0
ln(ε)dω +

∫ 10

1
ln(1.5)dω +0.100

= ln(ε)+9ln(1.5)+0.100

So ε ≥ 0.0235 .

Comments: Relatively few students attempted this question but generally good answers
were provided. Relatively few provided a complete answer for the derivation in b(i).
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3 (a) (i) Figure 3 below shows the bode plot of G(s), K1(s) and G(s)K1(s)
respectively.
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Fig. 3

(ii) Figure 4 shows the Nyquist plot of G(s).

(iii) There are two counterclockwise encirclements of the point −1 in the Nyquist
plot of G(s)K1(s) so there are two RHP poles.

(b) (i) The minimum phase plot of G(s) is shown in Figure 5 (superimposed on its
original bode plot).

(ii) There is one RHP zero. The two RHP poles provide a phase lead of 180◦ and
their location is at s = 2. The RHP zero provides a phase lag and its location is at
s = 40.

(iii) The crossover frequency should be above that of the RHP poles and below
that of the RHP zero.

(c) (i) To achieve specification A with a single compensator this will need to have a
gain at s = 0 of 10/G(0) = 4. A phase lead compensator of the form

K2(s) = α
(s+ωc/α)

(s+ωcα)
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Fig. 5

needs to be multiplied by a constant 4α to achieve this. From the expression for the
maximum phase advance in the data book, it follows that an increase in α , which
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increases the maximum phase advance, increases the crossover frequency due to
the increased gain, and hence the requirement for phase advance increases. The
maximum phase advance provided is then not adequate to satisfy the specification.

(ii) Chose K2(s) as a lead lag compensator. The phase lag compensator provides
the required increased gain at low frequencies, and the lead compensator provides
the phase lead needed for specification B. So choose

K2(s) = α
(s+ωc/α)

(s+ωcα)

(s+0.4α)

(s+0.1)

where α = 2.1, ωc = 10. The bode plot plot of L(s) with this compensator is shown
in Figure 6, superimposed on the plot without K2(s).
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Fig. 6

Comments: A popular question attempted by most students. Generally good designs
of lead/lag compensators were proposed. A number of students provided incomplete
answers for c(i).

END OF PAPER
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