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OPTIMAL AND PREDICTIVE CONTROL - SOLUTIONS
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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1 (@) Consider the differential equation
X=Xx+u, X(0)=xo, Q)

and the cost function

J(xo,u(-)):/OTuz(t)dtJr@, £>0,

and let V(x,t) be a solution to the Hamilton-Jacobi-Bellman PDE on the attached
datasheet. Then the optimal cost J*(xp) = miny ) J(Xo, u(+)) satisfies J*(xp) =V (Xo,0).
(i) Let X(t) satisfy the Riccati ODE

—X=2X-X2, X(T)= %

(2)

Prove that the value function V (x,t) = X(t)x2 is a solution to the Hamilton-Jacobi-
Belman PDE, and give an expression for a state feedback law u(t) = k(t)x(t) which

achieves J(xo, u(-)) = J*(xo). [25%]
(i)  Show that )
X(t) =
=1 (1-2¢)e2t=T)
isasolution to the Riccati ODE defined in (2). [20%]

(iii) Hence determine the optimal cost J*(xg), and a state feedback law u(t) =
K(t)x(t) which achieves this optimal cost. [10%]

(b) If xisasolution to the differential equation defined in (1), then

t
X(t) :Xoet+/() u(t)e~“dr.
(i) Lettheinput to the differential equation defined in (1) be

—2xget
ut) = T2t
Show that x(T) = 0, and calculate [ u2(t)dt. [25%)]

(i) Determine the input u to the differential equation defined in (1) which
achievesx(T) = 0 and minimises fOT uz(t)dt. Explain your reasoning by comparing
your answersto parts (a)(iii) and (b)(i). [20%]
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SOLUTION:

@

(i)  TheHamilton-Jacobi-Bellman PDE is

VX)) [ 5 dV(xt) X2
EAAS LV oVLY) VixT)=2.
S —min(24 M) Vi) =
If X (t) satisfiesthe Riccati ODE —X = 2X — X2, X(T) = 1/¢, thenV (x,t) = X (t)x?
satisfiesV (x, T) = x2/e. Furthermore, since avsi((’t) = 2Xx, then
24 Y (X4 U) = U + 2Xxu + 2Xx2

X
= (U+XX)% + (2X = X2)2.

Thus,

rJ}i.g\ <u2+ 8Va(§,t) (x+ u)) = r&l? ((u+Xx)2+ (2X — X2)x2> = (2X — X?)x?

aV(xt)

But 255 = Xx% = —(2X — X?)x?, and it follows that

NXt) . (5 dV(xt)
i Cass
Theinput u*(-) which achieves J(xg, u*(-)) = J*(Xp) istheinput which achievesthe
minimum in the Hamilton-Jacobi-Bellman PDE, i.e.,
. aV (x,1)
* _ 2 ?
u* () = argming.) <u +T(x+ u)) .
From above, it follows that u*(t) = —X(t)x(t).

(i) Noteinitially that X(T) = 1/e. It remainsto show that X 4+ 2X — X2 = 0. By
differentiating,

4(1—2¢)t-T)

Xt = (1— (1—2¢)2t-T))2’

Thus,

: — - —(1- (t=T)H
X(0)+2x(0) X0 = 5 28)62((t1i)£f<218)§tfi>2e2t 2o

(iii) From part ()(i),

fry B -2
50 = XOKO = e e

2 2
¥ (%0) = X(0)§ = 77— (l_xzog)e_ﬁ)-

Thusthe optimal cost J*(Xg) = 2x3/(1— (1 2e)e~2T) and is achieved by the state
feedback u(t) = k(t)x(t) with k(t) = —2/(1— (1—2¢)e 2(=T)),
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(b)

(i) By direct calculation,

T 2
x(T):xoeT+/ u(t)e’ ~Tdr = xpe' il :OZT A e’ ~2%dr
2X0 11 " xo(eT —e™T)
_waT Aror| T
=%® 1—e—2T[ 2° ]0 *o® 1—e2T
=0.
Also,
2 2 T 2
/Tuz(t)dt— ha /Tezdtz B¢ Lo 2
0 (1-e2T)2 Jo (1-e 22| 2 o 1-—e 2T
(i) Let t
—2Xp€™

Then from part (b)(i), the input u; to the differential equation x = x+ uq withinitial
condition x(0) = xg achievesx(T) = 0, and

T 2x2
2 %0
us(t)dt = ———=.
/0 i®) 1—e 2T
Now, let u be the input to the differential equation X = x+ u with initial condition
x(0) = 0 which achieves x(T) = 0 and minimises [ u?(t)dt. Then fJ uf(t)dt >
Jo UA(t)dt. Next, let e > 0, and let J(xg, u(-)) be asin part (a). Then
X*(T)

/Tuztdt—/TuztdtJr = J(Xg,u(+)) > minJ(xg,u(-)) = J*
[ 0= [0 = 30,u() 2 mindbo.u) =3 o)

Then, using the answer from part (a)(iii), it follows that

2
2% /T u3(t)dt > /T w2 (t)dt > 2

1-e2T  Jo 0 T (1-(1-28)e2T)’

Thisinequality holdsfor al € > 0, so taking the limit as e — O gives

- e—ZT_/ u3(t)dt = /uz(t)dt.

It followsthat the input
—2xpe
u(t) = 1 o 2T

achieves x(T) = 0 and minimises [J u2(t)dt.
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EXAMINER'S COMMENTS. Answered by 28 of 35 candidates

@

(b)

(i)  Answered well by the majority of candidates. A common omission was to not
check the boundary condition.

(i)  Also answered well by the majority of candidates. Some did not check the
boundary condition. 1 candidate attempted to derive the expression for X from the
differential equation, which is much more demanding than simply verifying that the
given X satisfies the differential equation.

(iii) Again answered well by most candidates. Some candidates got confused
between xg and x(t) (e.g., stating u*(t) = —X(t)xg).

(i) Answered well by most candidates. Unfortunately 2 students offered no
solution.

(i)  Only 4 candidates received all marks, despite a similar example being given
in the lectures. A common mistake was to consider the limit as € — «. Some
candidates took the limit as € — O but did not notice that the optimal cost coincided
with the cost for the input in (b)(i), and left the input defined implicitly in terms of

x(t) (i.e, u(t) = %@T)).
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2

Consider the continuous-time system

: CiX
X = Ax+ Bqwj + Bou, z:[j], u=Kx, 3

where A € R2%2 By € R%*1 B, e R2¥1,C; e R1¥2 and K € R1%2,

(@

The £ norm of asignal zisdefined as

2|2 = \//ODOZ(t)Tz(t)dt.

For the continuous-time system defined in (3), let x(t) = O for al t < 0, and let w4 (t) =
o(t) (the unit delta function).

(b)

(i) Findx(04) [wherex(04)=limg_0¢>0X(€)]. [10%]

(i) Let X € R%*2 be a symmetric solution to the Control Algebraic Riccati
Equation (CARE)
XA+ATX +C]Cy —XByBIX =0 (4

and let A+ BoK be stable. Prove that
12]15 = x(04)TXX(0.) +[| (K + BF X)x|[3.
Hint: etV (t) = x(t) TXx(t) and consider [ (2" (t)z(t) +V/(t)) di. [25%)]

(iii) Denote the transfer function from wy to zby Tw,; —z. By noting that Ty, —z is
the Laplace transform of zwhenw; (t) = 6(t), show that the 7> norm of Ty, —z is

V272l [10%]

For the continuous-time system defined in (3), let
01 V3
, B1=
10 0

(i)  Verify that there are two solutionsto the CARE defined in (4) which take the
form

0
1

A= , Bo= , C]_:[\/\.a) O].

X — a 3 7
3 B
and find the poles of A— BZBEX for each of these two solutions. [35%]

(i) Hence find the static stabilising state feedback u = Kx which minimises the
5 norm of Ty, —,z, and the value of the 77 norm of T,z when this feedback is
applied. Explain your reasoning by referring to your answersto parts (a) and (b)(i). [20%]
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SOLUTION:

@ () LetT >0ande >0, and note that x(t) must be bounded in the interva
—T <t <e. Sincex= (A+ ByK)x+ Bywyq, then
€ € €
/TX(t)dt:/T(A+ BZK)x(t)dt+/TBlwl(t)dt.

Since x(t) = 0 for al t <0, then [E4x(t)dt = x(¢) and [E1 (A+ByK)x(t)dt =
J§ (A+BoK)x(t)dt. Also, wy(t) = &(t) impliesthat [€ Bywy (t)dt = B;. Thus,

X(e) = /08 (A+BoK)x(t)dt + B;.

Taking thelimit ase — 0 givesx(04) = By.
(i) Since A+ByK isstable, then x(t) — 0 ast — . Now, let € > O, and note that

[e)

/ T 2t)Tz(t) £V (t)dt = / u(t)Tu(t) + x(t) TCTCax(t) -+ x(t) TXx(t) + x(t) TXx(t)ct.

€
Since x(t) = Ax(t) 4+ Bou(t) for all t > 0, then it follows that

oo

/ T 2t)TZ(t) + V(t)dt = / u(t)Tu(t) -+ u(t) TBIXx(t) +x(t) TXBau(t)

£
+x(t) T (XA+ATX +Cl Cp)x(t)dt

— [ (u+BEx0 0T (u+ BIXY 1
+x(t) T (XA+ATX +CJ Cy — XB,oB) X)x(t)dt
_ /°° (u+BIXx) (1) T (u+BIXx) (t)dt.

Sincex(t) — 0ast — o, thenV (t) — 0 ast — o0, and so [°V/(t)dt = —x(&) T Xx(e).
Thus,

()

/ T 20T 2(t)dt —x(e) TXx(e) = / (u+BIXx) (t)T (u+ BIXx)(t)dt

€
By taking the limit as € — 0, and recalling that u = Kx (so, in particular, x is
continuous), then ||z]|3 = x(04) TXx(0) + || (K +BJ X)x||3.

(iii) The 2% norm of a stable transfer function G is defined as

\//Ztrace (WTG(J'CO)) do.

Since Tw,—z is stable and has only one column, then the 7, norm of Ty, 7 is
equal to

T .
\// TW1_>2(J(D) TW1_>2(]0))d(O.
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(b)

From Parseval’s theorem (see the Electrical and Information Databook), noting that
Tw, —z isthe Laplace transform of z, then

oo

/ ZTWﬁZ( [0) Ty s2(j)do = 27 / 26)TZ(t)t.

—00

Sincez(t) = Oforalt <O, it followsthat the 77 norm of Tw, 7z is v 27|z ».

(i) Substituting for A,C1,B; and X in the CARE XA+ ATX +CJ[C; —
XB,BJ X = 0 gives
0 o—2p
o—23 6-—p
Thus, B = +v/6 and o = +21/6, which gives the two solutions to the CARE:

X1 = [2\/6 3 ] , and Xo = [_23\/6 —f/é] .

The poles of A— B,BJ X are the roots of det (A1 — (A—B,BJ X)) = 0. Note that

det(M-(A-Bﬁ}XQ):det( A

-1
A D =22+ V61 +2,
so the poles of A— ByBJ X; are at —\/gi \/gj. Also,

det (/u — (A stgx2>) — det (

Ao-1 )
) A_\@D_/l VB +2,

so the poles of A— ByBl X, are at \/gi \/gj.
(i) LetX beasymmetric solution to the CARE XA+ATX +CJCy — XBBI X =
0 and let A+ ByK be stable. Then, from part (a)(ii),

1213 = x(04) TXX(0+) + || (K + B X)x||3.

It follows that [|z]|3 > x(04)TXx(04). Furthermore, if A—B,BJ X is stable, then
K = —BJ X achieves ||z]|3 = x(04) TXx(0). Since, from part (b),

w_|2V6 3

=15 7%

satisfiesthe CARE XA+ATX +CJ C; —XB,BJ X = 0 and makesA—B,B] X stable,
then from part (a)(iii) it follows that

K=-B]x=[3 V§
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minimises the 775 norm of Tw; —z. From parts (a)(i) and (a)(iii), for thisvalue of K,

the 7% norm of Ty, 7 isequal to v/2x|zl| = 1/27B] XB; = v/12V/67.

EXAMINER'S COMMENTS. Answered by 9 of 35 candidates.

@

(b)

(i) Only 2 candidates obtained all the marks. Several students recalled (often
incorrectly) the more complicated case in which B4 has more than one column.

(i) Answers to this question were polarised, with 5 good answers and 4
candidates receiving fewer than half marks.

(ili) Unfortunately 4 candidates did not provide an answer to this question.

(i) Answered well by most candidates, although 2 candidates did not answer the
second half of the question.

(i)  No candidates obtained the correct expression for the optimal .7#5 norm (a
few came close). There were 3 good answers to this question, and the remaining
candidates received less than half marks.
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3 (8 Explainwhat is meant by the following:
(i) Convex set;
(i) Convex function;
(iii) Convex optmization problem.

[20%]

(b) Consider the standard formulation of a receding horizon control policy for the
discrete time system x(k+ 1) = Ax(k) + Bu(k) where for a state x(k) = x the finite horizon

cost function
N—1

V(x,u) = x& PXN -+ z (xiTQxi + uiT Rui>
i=0
is minimized with respect to the inputs
Uo
u= :
UN—1

with Xxg = x and xj 11 = Axj +Bu; fori =0,...,N — 1. Matrices P, Q, and R are constant
and positive definite. The control input is given by uj(x), i.e. the first element of the
optimal input sequence

u*(x) = agminV (x,u) = {ug(x),u3 (x),...,uj_1(X) }

Let
X1

XN
be the stacked vector of the statesin the prediction horizon.

(1)  Show that x = ®xg+ I'u for some matrices @ and I" and derive the form of
these matrices in terms of the system matrices A and B. [20%]

(i)  Show that the receding horizon optimization problem can be formulated as a
convex optimization problem with a quadratic cost function. [20%]

(iii) Show that the control law is given by uj(x) = Krncx where Kryc is a
constant matrix and derive an expression for Krpc. [20%]

(iv) Discuss how constraints on the system states and inputs can easily be
incorporated in model predictive control. [20%]
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SOLUTION:

@

(b)

V (X,

(i) A set Cisconvex if it contains the line segments between any two pointsin
theset, i.e.
X1, X €C, 0<6<1= 6x1+(1-0)x€C.

(i) A function f : SC R" — R isaconvex function if and only if

flax+By) < af(x)+B1(y)

fordl o+B =1, a>0,and B > 0 (where f isdefined for x € S which isa convex
Set).

(ili) The optimization problem

m)in fo(x)
subject to fix) <bj, i=1....m
hl (X) = 07 =1, ) p

is convex if the objective and the inequality constraint functions are convex and the
equality constraint functions hj(x) are linear plus a constant (affine).

(i) By recursively applying the system dynamics with initial condition xg it can
be deduced that

(A [ B 0 ... 0]
A2 AB B .- 0
o=\ |, I'= . . .
AN AN-1g aAN-2g ... B

(i)  V(x,u) cabewritten as

T T
X1 Q X1 Uo R Uo
X2 Q X2 uy R ug
u) =X Qo+ | . N .
XN Pl | XN UN_1 Rl [un_—1
= X" Qx+x"Qx+u'Yu.

Substituting X = ®x+ I'u we get
1
V(x,u) = éuTGu +UTFx+x" (Q+ DT QD)X
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where

G=2(¥+r'arn
F=2I"Qo.
Since Q,P,R are positive definite we have W,Q are positive definite and hence

G > 0. Therefore the cost function is quadratic and convex. Hence the optimization
problem is convex.

(iii) Tofind the minimum we solve the equation
VWu(x,u) = Gu+Fx=0.

The optimal input sequenceiis therefore u* (x) = —G~1Fx. The RHC law is defined
by the first part of u*(x):

Up(X) = ['m o -- O] u*(x).
Hence
KrHC = — ['m 0 - 0] G IF

(iv) Linear constraints of the form

Mixi + Ejui <bj, forali=0,1...,N—1
MnXn < by.

can easily be incorporated, as the optimization problem remains convex. Note
though that additional conditions are needed to ensure feasibility of the control

policy.

EXAMINER'S COMMENTS. Answered by all candidates.

This was a very popular question that was generally well answered. Many students did
not provide an accurate definition of what is a convex optimization problem. Also in the
last part most students failed to comment that additional conditions are needed to ensure
feasibility of the control policy when constraints are present.

Page 12 of 16



Version ICL/3

4 (@) Describe two advantages and two disadvantages of model predictive control. [20%]

(b) Explainwhat ismeant by aLyapunov function of a discrete time system and explain
how this can be used to prove global asymptotic stability. [20%]

(c) Consider the standard formulation of a receding horizon control policy for the
discrete time system x(k+ 1) = Ax(k) 4 Bu(k) wherefor a state x(k) = x thefinite horizon
cost function

N—1
V(x,u) = x{, Pxn + 2 (x,—TQxi + uiT Rui>
i=0
is minimized with respect to the inputs
Uo

UN-1

with Xg = xand xj 11 = Ax; +Bu; fori =0,...,N — 1. MatricesP, Q, and R are constant
and positive definite. The control input is given by uj(x), i.e. the first element of the
optimal input sequence

u*(x) = agminV (x,u) = {ug(x),u1(x),...,uN_1(X) } -

(i) Explain whether this control policy aways leads to a feedback system with a
stable equilibrium point. [10%)]
(i) Explain what is meant by the value function. [5%]
(iii) Show that by choosing the terminal cost such that P > 0 and

(A+BK)TP(A+BK)—P < -Q—-KTRK

for some matrix K, then the value function can be used as a Lyapunov function for
the system. [40%)]

(iv) Discuss whether for your answer in part (iii) you have explicitly constructed
the optimal control policy. [5%]
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SOLUTION:

(@ Advantages: Allowsconstraintsto beincluded; allowsnonlinear modelsand control
policies.

Disadvantages. can be computationally intensive; can be challenging to guarantee
stability/feasibility.

(b) A continuousfunctionV : S— R defined on aregion Sc R" containing the origin
initsinterior is called a Lyapunov function for asystem x(k+ 1) = f(x(k)) if:

(i) V(©O)=0

(i) V(x)>O0forall xe Swithx#0

(i) V(x(k+1)) =V (x(k)) <O0foral x(k) €S
If there exists a Lyapunov function such that

V(x(k+1)) —V(x(k)) < 0for al x(k) € Swith x(k) #0

andV (X) — e as ||x|| — - then the origin isaglobally asymptotically stable equilibrium
point of the system.

(¢) (1) No,sinceonly afinitehorizonisconsidered. Additional conditionsare needed
for stability.

(i) Thevauefunctionis
V*(x) = rrbinV(x,u)
(ili) SinceQ > 0and R> 0, it follows that:
A. V*0)=0
B. V*(x)>x"Qx>0foralx#0
C. V*(X) s ooas|x||— oo

We need to also ensure that

V*(x(k+1)) —V*(x(k)) < Ofor al x# 0.

It is sufficient to be able to construct a candidate sequence { at time k+ 1 that
satisfies

V(x(k+1),8) —V*(x(k)) < 0for al x(k) # O.
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Consider the optimal input sequence

U*(X) = {UB(X), Ui(X), ) U*N—l(x>} :
and define
(x) = {U3 (9, U3(X), ... Uy _1(x), KX (%)}

for someK to be determined. Define the stage cost /(x, u) £ x” Qx+u' Ru, and the
terminal cost Vi (x) £ xT Px . It is sufficient to show that

Vi 06 ((K9)) + £ 06 (x(K)) Ky (x(K))) +Viy ((A-+ BK)x{ (x(K)) < 0.

oldterminal cost  new (N — 1)th stage cost new terminal cost

Substituting the expressions for V(x) and ¢(x,u) leads to the condition in the
question.

(iv) The candidate sequence {i(x) is not necessarily optimal, but its existence
guarantees that the optimal policy will lead to a stable system if the condition on P
is satisfied.

EXAMINER'S COMMENTS. Answered by 33 of 35 candidates.

This was also a very popular question. Part (a) was generally well answered. In parts
(b) and (c) many students did not mention the fact that for global asymptotic stability we
also need the Lyapunov function to satisfy V (X) — oo as ||X|| — . In the last part many
students did not identify that the policy used for the derivation in part (b)(iii) was not
necessarily optimal.

END OF PAPER
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