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1 (a) Consider the differential equation

ẋ = x+u, x(0) = x0, (1)

and the cost function

J(x0,u(·)) =
∫ T

0
u2(t)dt+

x2(T )
ε

, ε > 0,

and let V (x, t) be a solution to the Hamilton-Jacobi-Bellman PDE on the attached

datasheet. Then the optimal cost J∗(x0) = minu(·) J(x0,u(·)) satisfies J∗(x0) =V (x0,0).

(i) Let X(t) satisfy the Riccati ODE

−Ẋ = 2X −X2, X(T ) =
1
ε
. (2)

Prove that the value function V (x, t) = X(t)x2 is a solution to the Hamilton-Jacobi-

Belman PDE, and give an expression for a state feedback law u(t) = k(t)x(t) which

achieves J(x0,u(·)) = J∗(x0). [25%]

(ii) Show that

X(t) =
2

1− (1−2ε)e2(t−T)

is a solution to the Riccati ODE defined in (2). [20%]

(iii) Hence determine the optimal cost J∗(x0), and a state feedback law u(t) =

k(t)x(t) which achieves this optimal cost. [10%]

(b) If x is a solution to the differential equation defined in (1), then

x(t) = x0et +

∫ t

0
u(τ)et−τdτ.

(i) Let the input to the differential equation defined in (1) be

u(t) =
−2x0e−t

1− e−2T .

Show that x(T ) = 0, and calculate
∫ T
0 u2(t)dt. [25%]

(ii) Determine the input u to the differential equation defined in (1) which

achieves x(T ) = 0 and minimises
∫ T
0 u2(t)dt. Explain your reasoning by comparing

your answers to parts (a)(iii) and (b)(i). [20%]
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SOLUTION:

(a) (i) The Hamilton-Jacobi-Bellman PDE is

−∂V (x, t)
∂ t

= min
u(·)

(
u2 +

∂V (x, t)
∂x

(x+u)

)
, V (x,T ) =

x2

ε
.

If X(t) satisfies the Riccati ODE −Ẋ = 2X −X2, X(T ) = 1/ε , then V (x, t)= X(t)x2

satisfies V (x,T ) = x2/ε . Furthermore, since ∂V (x,t)
∂x = 2Xx, then

u2+
∂V (x, t)

∂x
(x+u) = u2 +2Xxu+2Xx2

= (u+Xx)2+(2X −X2)x2.

Thus,

min
u(·)

(
u2+

∂V (x, t)
∂x

(x+u)

)
= min

u(·)

(
(u+Xx)2+(2X −X2)x2

)
= (2X −X2)x2

But ∂V (x,t)
∂ t = Ẋx2 =−(2X −X2)x2, and it follows that

−∂V (x, t)
∂ t

= min
u(·)

(
u2+

∂V (x, t)
∂x

(x+u)

)
.

The input u∗(·) which achieves J(x0,u
�(·))= J∗(x0) is the input which achieves the

minimum in the Hamilton-Jacobi-Bellman PDE, i.e.,

u∗(·) = argminu(·)
(

u2+
∂V (x, t)

∂x
(x+u)

)
.

From above, it follows that u∗(t) =−X(t)x(t).

(ii) Note initially that X(T ) = 1/ε . It remains to show that Ẋ +2X −X2 = 0. By

differentiating,

Ẋ(t) =
4(1−2ε)e2(t−T)

(1− (1−2ε)e2(t−T))2
.

Thus,

Ẋ(t)+2X(t)−X2(t) =
4(1−2ε)e2(t−T) +4(1− (1−2ε)e2(t−T))−4

(1− (1−2ε)e2(t−T))2
= 0.

(iii) From part (a)(i),

u∗(t) =−X(t)x(t) =
−2

(1− (1−2ε)e2(t−T))
x(t),

J∗(x0) = X(0)x2
0 =

2x2
0

(1− (1−2ε)e−2T )
.

Thus the optimal cost J∗(x0) = 2x2
0/(1−(1−2ε)e−2T ) and is achieved by the state

feedback u(t) = k(t)x(t) with k(t) =−2/(1− (1−2ε)e−2(t−T)).
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(b) (i) By direct calculation,

x(T ) = x0eT +

∫ T

0
u(τ)eT−τdτ = x0eT − 2x0

1− e−2T

∫ T

0
eT−2τdτ

= x0eT − 2x0

1− e−2T

[
−1

2
eT−2τ

]T

0
= x0eT − x0(e

T − e−T )

1− e−2T

= 0.

Also,

∫ T

0
u2(t)dt =

4x2
0

(1− e−2T )2

∫ T

0
e−2tdt =

4x2
0

(1− e−2T )2

[
−1

2
e−2t

]T

0
=

2x2
0

1− e−2T .

(ii) Let

u1(t) =
−2x0e−t

1− e−2T .

Then from part (b)(i), the input u1 to the differential equation ẋ = x+u1 with initial

condition x(0) = x0 achieves x(T ) = 0, and

∫ T

0
u2

1(t)dt =
2x2

0
1− e−2T .

Now, let u be the input to the differential equation ẋ = x+ u with initial condition

x(0) = 0 which achieves x(T ) = 0 and minimises
∫ T
0 u2(t)dt. Then

∫ T
0 u2

1(t)dt ≥∫ T
0 u2(t)dt. Next, let ε > 0, and let J(x0,u(·)) be as in part (a). Then

∫ T

0
u2(t)dt =

∫ T

0
u2(t)dt+

x2(T )
ε

= J(x0,u(·))≥ min
u()̇

J(x0,u(·)) = J∗(x0).

Then, using the answer from part (a)(iii), it follows that

2x2
0

1− e−2T =

∫ T

0
u2

1(t)dt ≥
∫ T

0
u2(t)dt ≥ 2x2

0
(1− (1−2ε)e−2T )

.

This inequality holds for all ε > 0, so taking the limit as ε → 0 gives

2x2
0

1− e−2T =

∫ T

0
u2

1(t)dt =
∫ T

0
u2(t)dt.

It follows that the input

u(t) =
−2x0e−t

1− e−2T .

achieves x(T ) = 0 and minimises
∫ T
0 u2(t)dt.
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EXAMINER’S COMMENTS. Answered by 28 of 35 candidates

(a) (i) Answered well by the majority of candidates. A common omission was to not

check the boundary condition.

(ii) Also answered well by the majority of candidates. Some did not check the

boundary condition. 1 candidate attempted to derive the expression for X from the

differential equation, which is much more demanding than simply verifying that the

given X satisfies the differential equation.

(iii) Again answered well by most candidates. Some candidates got confused

between x0 and x(t) (e.g., stating u∗(t) =−X(t)x0).

(b) (i) Answered well by most candidates. Unfortunately 2 students offered no

solution.

(ii) Only 4 candidates received all marks, despite a similar example being given

in the lectures. A common mistake was to consider the limit as ε → ∞. Some

candidates took the limit as ε → 0 but did not notice that the optimal cost coincided

with the cost for the input in (b)(i), and left the input defined implicitly in terms of

x(t) (i.e., u(t) = −2x(t)

1−e2(t−T) ).
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2 Consider the continuous-time system

ẋ = Ax+B1w1 +B2u, z =

[
C1x

u

]
, u = Kx, (3)

where A ∈ R
2×2, B1 ∈ R

2×1, B2 ∈ R
2×1, C1 ∈ R

1×2, and K ∈ R
1×2.

(a) The L2 norm of a signal z is defined as

‖z‖2 =

√∫ ∞

0
z(t)T z(t)dt.

For the continuous-time system defined in (3), let x(t) = 0 for all t < 0, and let w1(t) =

δ (t) (the unit delta function).

(i) Find x(0+) [where x(0+) = limε→0,ε>0 x(ε)]. [10%]

(ii) Let X ∈ R
2×2 be a symmetric solution to the Control Algebraic Riccati

Equation (CARE)

XA+AT X +CT
1 C1 −XB2BT

2 X = 0 (4)

and let A+B2K be stable. Prove that

‖z‖2
2 = x(0+)

T Xx(0+)+‖(K+BT
2 X)x‖2

2.

Hint: let V (t) = x(t)T Xx(t) and consider
∫ ∞
0+

(
zT (t)z(t)+ V̇(t)

)
dt. [25%]

(iii) Denote the transfer function from w1 to z by Tw1→z. By noting that Tw1→z is

the Laplace transform of z when w1(t) = δ (t), show that the H2 norm of Tw1→z is√
2π‖z‖2. [10%]

(b) For the continuous-time system defined in (3), let

A =

[
0 1

1 0

]
, B1 =

[√
3

0

]
, B2 =

[
0

1

]
, C1 =

[√
3 0

]
.

(i) Verify that there are two solutions to the CARE defined in (4) which take the

form

X =

[
α 3

3 β

]
,

and find the poles of A−B2BT
2 X for each of these two solutions. [35%]

(ii) Hence find the static stabilising state feedback u = Kx which minimises the

H2 norm of Tw1→z, and the value of the H2 norm of Tw1→z when this feedback is

applied. Explain your reasoning by referring to your answers to parts (a) and (b)(i). [20%]
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SOLUTION:

(a) (i) Let T > 0 and ε > 0, and note that x(t) must be bounded in the interval

−T ≤ t ≤ ε . Since ẋ = (A+B2K)x+B1w1, then∫ ε

−T
ẋ(t)dt =

∫ ε

−T
(A+B2K)x(t)dt+

∫ ε

−T
B1w1(t)dt.

Since x(t) = 0 for all t < 0, then
∫ ε−T ẋ(t)dt = x(ε) and

∫ ε−T (A+B2K)x(t)dt =∫ ε
0 (A+B2K)x(t)dt. Also, w1(t) = δ (t) implies that

∫ ε−T B1w1(t)dt = B1. Thus,

x(ε) =
∫ ε

0
(A+B2K)x(t)dt+B1.

Taking the limit as ε → 0 gives x(0+) = B1.

(ii) Since A+B2K is stable, then x(t)→ 0 as t → ∞. Now, let ε > 0, and note that∫ ∞

ε
z(t)T z(t)+ V̇(t)dt =

∫ ∞

ε
u(t)T u(t)+ x(t)TCT

1 C1x(t)+ ẋ(t)T Xx(t)+ x(t)TXẋ(t)dt.

Since ẋ(t) = Ax(t)+B2u(t) for all t > 0, then it follows that∫ ∞

ε
z(t)T z(t)+ V̇(t)dt =

∫ ∞

ε
u(t)T u(t)+u(t)TBT

2 Xx(t)+ x(t)TXB2u(t)

+ x(t)T (XA+AT X +CT
1 C1)x(t)dt

=
∫ ∞

ε
(u+BT

2 Xx)(t)T (u+BT
2 Xx)(t)

+ x(t)T (XA+AT X +CT
1 C1 −XB2BT

2 X)x(t)dt

=
∫ ∞

ε
(u+BT

2 Xx)(t)T (u+BT
2 Xx)(t)dt.

Since x(t)→ 0 as t →∞, then V (t)→ 0 as t →∞, and so
∫ ∞

ε V̇ (t)dt =−x(ε)T Xx(ε).
Thus, ∫ ∞

ε
z(t)T z(t)dt− x(ε)T Xx(ε) =

∫ ∞

ε
(u+BT

2 Xx)(t)T (u+BT
2 Xx)(t)dt

By taking the limit as ε → 0, and recalling that u = Kx (so, in particular, x is

continuous), then ‖z‖2
2 = x(0+)T Xx(0+)+‖(K+BT

2 X)x‖2
2.

(iii) The H2 norm of a stable transfer function G is defined as√∫ ∞

−∞
trace

(
G( jω)

T
G( jω)

)
dω.

Since Tw1→z is stable and has only one column, then the H2 norm of Tw1→z is

equal to √∫ ∞

−∞
Tw1→z( jω)

T
Tw1→z( jω)dω.
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From Parseval’s theorem (see the Electrical and Information Databook), noting that

Tw1→z is the Laplace transform of z, then∫ ∞

−∞
Tw1→z( jω)

T
Tw1→z( jω)dω = 2π

∫ ∞

−∞
z(t)Tz(t)dt.

Since z(t) = 0 for all t < 0, it follows that the H2 norm of Tw1→z is
√

2π‖z‖2.

(b) (i) Substituting for A,C1,B2 and X in the CARE XA + AT X + CT
1 C1 −

XB2BT
2 X = 0 gives [

0 α −2β
α −2β 6−β 2

]
= 0.

Thus, β =±√
6 and α =±2

√
6, which gives the two solutions to the CARE:

X1 =

[
2
√

6 3

3
√

6

]
, and X2 =

[
−2

√
6 3

3 −√
6

]
.

The poles of A−B2BT
2 X are the roots of det(λ I− (A−B2BT

2 X)) = 0. Note that

det
(

λ I− (A−B2BT
2 X1)

)
= det

([
λ −1

2 λ +
√

6

])
= λ 2+

√
6λ +2,

so the poles of A−B2BT
2 X1 are at −

√
3
2 ±

√
1
2 j. Also,

det
(

λ I− (A−B2BT
2 X2)

)
= det

([
λ −1

2 λ −√
6

])
= λ 2−

√
6λ +2,

so the poles of A−B2BT
2 X2 are at

√
3
2 ±

√
1
2 j.

(ii) Let X be a symmetric solution to the CARE XA+AT X +CT
1 C1−XB2BT

2 X =

0 and let A+B2K be stable. Then, from part (a)(ii),

‖z‖2
2 = x(0+)

T Xx(0+)+‖(K+BT
2 X)x‖2

2.

It follows that ‖z‖2
2 ≥ x(0+)T Xx(0+). Furthermore, if A−B2BT

2 X is stable, then

K =−BT
2 X achieves ‖z‖2

2 = x(0+)T Xx(0+). Since, from part (b),

X =

[
2
√

6 3

3
√

6

]

satisfies the CARE XA+AT X+CT
1 C1−XB2BT

2 X = 0 and makes A−B2BT
2 X stable,

then from part (a)(iii) it follows that

K =−BT
2 X =

[
3

√
6
]
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minimises the H2 norm of Tw1→z. From parts (a)(i) and (a)(iii), for this value of K,

the H2 norm of Tw1→z is equal to
√

2π‖z‖2 =
√

2πBT
1 XB1 =

√
12

√
6π .

EXAMINER’S COMMENTS. Answered by 9 of 35 candidates.

(a) (i) Only 2 candidates obtained all the marks. Several students recalled (often

incorrectly) the more complicated case in which B1 has more than one column.

(ii) Answers to this question were polarised, with 5 good answers and 4

candidates receiving fewer than half marks.

(iii) Unfortunately 4 candidates did not provide an answer to this question.

(b) (i) Answered well by most candidates, although 2 candidates did not answer the

second half of the question.

(ii) No candidates obtained the correct expression for the optimal H2 norm (a

few came close). There were 3 good answers to this question, and the remaining

candidates received less than half marks.
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3 (a) Explain what is meant by the following:

(i) Convex set;

(ii) Convex function;

(iii) Convex optmization problem.

[20%]

(b) Consider the standard formulation of a receding horizon control policy for the

discrete time system x(k+1) = Ax(k)+Bu(k) where for a state x(k) = x the finite horizon

cost function

V (x,u) = xT
NPxN +

N−1

∑
i=0

(
xT
i Qxi+uT

i Rui

)
is minimized with respect to the inputs

u =

⎡
⎢⎣ u0

...

uN−1

⎤
⎥⎦

with x0 = x and xi+1 = Axi +Bui for i = 0, . . . ,N −1. Matrices P, Q, and R are constant

and positive definite. The control input is given by u∗0(x), i.e. the first element of the

optimal input sequence

u∗(x) = argmin
u

V (x,u) =
{

u∗0(x),u∗1(x), . . . ,u∗N−1(x)
}
.

Let

x =

⎡
⎢⎣ x1

...

xN

⎤
⎥⎦ ,

be the stacked vector of the states in the prediction horizon.

(i) Show that x = Φx0 +Γu for some matrices Φ and Γ and derive the form of

these matrices in terms of the system matrices A and B. [20%]

(ii) Show that the receding horizon optimization problem can be formulated as a

convex optimization problem with a quadratic cost function. [20%]

(iii) Show that the control law is given by u∗0(x) = KRHCx where KRHC is a

constant matrix and derive an expression for KRHC. [20%]

(iv) Discuss how constraints on the system states and inputs can easily be

incorporated in model predictive control. [20%]
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SOLUTION:

(a) (i) A set C is convex if it contains the line segments between any two points in

the set, i.e.

x1, x2 ∈C, 0 ≤ θ ≤ 1 =⇒ θx1 +(1−θ)x2 ∈C.

(ii) A function f : S ⊂ R
n → R is a convex function if and only if

f (αx+βy)≤ α f (x)+β f (y)

for all α +β = 1, α ≥ 0, and β ≥ 0 (where f is defined for x ∈ S, which is a convex

set).

(iii) The optimization problem

min
x

f0(x)

subject to fi(x)≤ bi, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

is convex if the objective and the inequality constraint functions are convex and the

equality constraint functions hi(x) are linear plus a constant (affine).

(b) (i) By recursively applying the system dynamics with initial condition x0 it can

be deduced that

Φ =

⎡
⎢⎢⎢⎢⎣

A

A2

...

AN

⎤
⎥⎥⎥⎥⎦ , Γ =

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ .

(ii) V (x,u) ca be written as

V (x,u) = xT
0 Qx0 +

⎡
⎢⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

Q

Q
. . .

P

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

u0

u1
...

uN−1

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

R

R
. . .

R

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u0

u1
...

uN−1

⎤
⎥⎥⎥⎥⎦

= xT Qx+xT Ωx+uT Ψu.

Substituting x = Φx+Γu we get

V (x,u) =
1
2

uT Gu+uT Fx+ xT (Q+ΦT ΩΦ)x
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where

G = 2(Ψ+ΓT ΩΓ)

F = 2ΓT ΩΦ.

Since Q,P,R are positive definite we have Ψ,Ω are positive definite and hence

G > 0. Therefore the cost function is quadratic and convex. Hence the optimization

problem is convex.

(iii) To find the minimum we solve the equation

∇Vu(x,u) = Gu+Fx = 0.

The optimal input sequence is therefore u∗(x) =−G−1Fx. The RHC law is defined

by the first part of u∗(x):

u∗0(x) =
[
Im 0 · · · 0

]
u∗(x).

Hence

KRHC =−
[
Im 0 · · · 0

]
G−1F

(iv) Linear constraints of the form

Mixi+Eiui ≤ bi, for all i = 0, 1, . . . , N −1

MNxN ≤ bN .

can easily be incorporated, as the optimization problem remains convex. Note

though that additional conditions are needed to ensure feasibility of the control

policy.

EXAMINER’S COMMENTS. Answered by all candidates.

This was a very popular question that was generally well answered. Many students did

not provide an accurate definition of what is a convex optimization problem. Also in the

last part most students failed to comment that additional conditions are needed to ensure

feasibility of the control policy when constraints are present.
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4 (a) Describe two advantages and two disadvantages of model predictive control. [20%]

(b) Explain what is meant by a Lyapunov function of a discrete time system and explain

how this can be used to prove global asymptotic stability. [20%]

(c) Consider the standard formulation of a receding horizon control policy for the

discrete time system x(k+1) = Ax(k)+Bu(k) where for a state x(k) = x the finite horizon

cost function

V (x,u) = xT
NPxN +

N−1

∑
i=0

(
xT
i Qxi+uT

i Rui

)
is minimized with respect to the inputs

u =

⎡
⎢⎣ u0

...

uN−1

⎤
⎥⎦

with x0 = x and xi+1 = Axi +Bui for i = 0, . . . ,N −1. Matrices P, Q, and R are constant

and positive definite. The control input is given by u∗0(x), i.e. the first element of the

optimal input sequence

u∗(x) = argmin
u

V (x,u) =
{

u∗0(x),u∗1(x), . . . ,u∗N−1(x)
}
.

(i) Explain whether this control policy always leads to a feedback system with a

stable equilibrium point. [10%]

(ii) Explain what is meant by the value function. [5%]

(iii) Show that by choosing the terminal cost such that P > 0 and

(A+BK)T P(A+BK)−P ≤−Q−KT RK

for some matrix K, then the value function can be used as a Lyapunov function for

the system. [40%]

(iv) Discuss whether for your answer in part (iii) you have explicitly constructed

the optimal control policy. [5%]
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SOLUTION:

(a) Advantages: Allows constraints to be included; allows nonlinear models and control

policies.

Disadvantages: can be computationally intensive; can be challenging to guarantee

stability/feasibility.

(b) A continuous function V : S →R defined on a region S ⊂ R
n containing the origin

in its interior is called a Lyapunov function for a system x(k+1) = f (x(k)) if:

(i) V (0) = 0

(ii) V (x)> 0 for all x ∈ S with x �= 0

(iii) V (x(k+1))−V(x(k))≤ 0 for all x(k) ∈ S

If there exists a Lyapunov function such that

V (x(k+1))−V(x(k))< 0 for all x(k) ∈ S with x(k) �= 0

and V (x)→ ∞ as ‖x‖→ ∞ then the origin is a globally asymptotically stable equilibrium

point of the system.

(c) (i) No, since only a finite horizon is considered. Additional conditions are needed

for stability.

(ii) The value function is

V ∗(x) = min
u

V (x,u)

(iii) Since Q > 0 and R > 0, it follows that:

A. V∗(0) = 0

B. V∗(x)≥ xT Qx > 0 for all x �= 0

C. V∗(x)→ ∞ as ‖x‖→ ∞

We need to also ensure that

V ∗(x(k+1))−V∗(x(k))< 0 for all x �= 0.

It is sufficient to be able to construct a candidate sequence ũ at time k + 1 that

satisfies

V (x(k+1), ũ)−V ∗(x(k))< 0 for all x(k) �= 0.
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Consider the optimal input sequence

u∗(x) =
{

u∗0(x), u∗1(x), . . . , u∗N−1(x)
}
.

and define

ũ(x) =
{

u∗1(x), u∗2(x), . . . , u∗N−1(x),Kx∗N(x)
}
.

for some K to be determined. Define the stage cost �(x,u)� xT Qx+uT Ru, and the

terminal cost VN(x)� xT Px . It is sufficient to show that

−VN (x∗N(x(k)))︸ ︷︷ ︸
old terminal cost

+�(x∗N(x(k)), Kx∗N(x(k)))︸ ︷︷ ︸
new (N − 1)th stage cost

+VN ((A+BK)x∗N(x(k)))︸ ︷︷ ︸
new terminal cost

≤ 0.

Substituting the expressions for VN(x) and �(x,u) leads to the condition in the

question.

(iv) The candidate sequence ũ(x) is not necessarily optimal, but its existence

guarantees that the optimal policy will lead to a stable system if the condition on P

is satisfied.

EXAMINER’S COMMENTS. Answered by 33 of 35 candidates.

This was also a very popular question. Part (a) was generally well answered. In parts

(b) and (c) many students did not mention the fact that for global asymptotic stability we

also need the Lyapunov function to satisfy V (x)→ ∞ as ‖x‖ → ∞. In the last part many

students did not identify that the policy used for the derivation in part (b)(iii) was not

necessarily optimal.
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